Greetings from PLANETQUANTUM.COM . We've uploaded
Statistics Tables containing critical values of the
Chi Square Distribution,
Fisher F Distribution, and
Student's t Distribution .
For a little taste, see below. To see the complete tables, click
Statistics Tables.
Lower Tail Critical Values of Chi Square Distribution
One sided test Prob(χ2≤c) = p
Reference: NIST/SEMATECH e-Handbook of Statistical Methods
ν\p |
.1 |
.05 |
.025 |
.01 |
.005 |
.0025 |
.001 |
.0005 |
.00025 |
.0001 |
1 | .01579077 | .00393214 | .00098207 | .00015709 | 3.9270e-5 | 9.8175e-6 | 1.5708e-6 | 3.9270e-7 | 9.8175e-8 | 1.5708e-8 |
2 | .21072103 | .10258659 | .05063562 | .02010067 | .01002508 | .00500626 | .00200100 | .00100025 | .00050006 | .00020001 |
3 | .58437437 | .35184632 | .21579528 | .11483180 | .07172177 | .04494134 | .02429759 | .01527897 | .00961426 | .00521483 |
Critical Values of Fisher F Distribution (1≤ν1≤10)
One sided test Prob(F≥c) = .1 = 10% significance level
Reference: NIST/SEMATECH e-Handbook of Statistical Methods
ν2\ν1 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 | 39.863458 | 49.500000 | 53.593245 | 55.832961 | 57.240077 | 58.204416 | 58.905953 | 59.438981 | 59.857585 | 60.194980 |
2 | 8.5263158 | 9.0000000 | 9.1617902 | 9.2434165 | 9.2926263 | 9.3255305 | 9.3490812 | 9.3667703 | 9.3805440 | 9.3915728 |
3 | 5.5383195 | 5.4623833 | 5.3907733 | 5.3426445 | 5.3091570 | 5.2847316 | 5.2661946 | 5.2516711 | 5.2399959 | 5.2304113 |
Critical Values of Student's t Distribution
One sided test Prob(t≤c) = p
Reference: NIST/SEMATECH e-Handbook of Statistical Methods
ν\p |
.9 |
.95 |
.975 |
.99 |
.995 |
.9975 |
.999 |
.9995 |
.99975 |
.9999 |
1 | 3.0776835 | 6.3137515 | 12.706205 | 31.820516 | 63.656741 | 127.32134 | 318.30884 | 636.61925 | 1273.2393 | 3183.0988 |
2 | 1.8856181 | 2.9199856 | 4.3026527 | 6.9645567 | 9.9248432 | 14.089047 | 22.327125 | 31.599055 | 44.704587 | 70.700071 |
3 | 1.6377444 | 2.3533634 | 3.1824463 | 4.5407029 | 5.8409093 | 7.4533185 | 10.214532 | 12.923979 | 16.326335 | 22.203742 |
Readers might like to know how we created these tables. From our perspective,
cumulative functions ChiSquareCum, FisherFCum, and StudentTCum are
disguised incomplete Gamma and incomplete Beta functions and we know how
to compute these functions. We apply
Brent's method
to the cumulative functions to get quantile functions
ChiSquareQuant, FisherFQuant, and StudentTQuant which we use to generate
the critical values appearing in our Statistics Tables.
Source Code:
ChiSquareTable.q.txt ,
FisherFTable.q.txt , and
StudentTTable.q.txt .
|