
Pronouns, Second Edition

(Python Version)

Kelly Roach
kellybrianroach@outlook.com

https://www.kellyroach.com

(12 December 2024)

Contents

Preface 3

Introduction 4

1 Fundamentals 6
1.1 Introduction . 6
1.2 Sentences . 6
1.3 Noun Phrases . 8
1.4 Pronouns . 9
1.5 Features . 10
1.6 Parse Trees . 10
1.7 Clauses . 11
1.8 Precedes and Commands . 13

2 Resolution Module 20
2.1 Introduction . 20
2.2 Environment . 20
2.3 Structure inside the Resolution Module 22

3 Global Declarations 23
3.1 Nodes . 25
3.2 C-S-N Trees . 25
3.3 Chaining Tables . 26
3.4 C-Nodes . 26
3.5 S-Nodes . 27
3.6 N-Nodes . 27
3.7 E-Nodes . 27
3.8 lit Field . 27

1

mailto:kellybrianroach@outlook.com
https://www.kellyroach.com

3.9 sub Field . 27
3.10 ftr Field . 27
3.11 up link Field . 28
3.12 down link Field . 28
3.13 left link Field . 29
3.14 right link Field . 29
3.15 thread link Field . 30
3.16 number Field . 30
3.17 np link Field . 31
3.18 chain link Field . 31
3.19 col link Field . 32
3.20 end col link Field . 32
3.21 pred link Field . 33
3.22 succ link Field . 34

4 Node Processor 35
4.1 Function view node str . 36

5 Parser 37

6 Primary Utilities 39

7 Secondary Utilities 41
7.1 Syntactic Conditions . 41
7.2 Agreement . 41
7.3 Equal Features . 42
7.4 Reflexive Nonreflexive Rule . 42

8 Table Processor I 43

9 Table Processor II 53

10 Table Processor III 57

11 Table Interpreter 98

12 Genitives 114

13 Focusing 119

References 133

Index 136

2

Preface

Pronouns, Second Edition is a 2024 LaTeX-formatted version of the author’s
original 1980 Caltech M.S. thesis, Pronouns [27]. The content of Pronouns,
Second Edition is substantially the same as the original Pronouns with the
following principal differences:

� OCR’d content of Pronouns converted to modern LaTeX style.

� Misspellings, minor grammar points, numberings, and minor technical
points are corrected.

� Capitalization changes.

� Figure captions shortened.

� PEP 8 Coding Style identifier spellings.

� Tikz figures replace partially hand-drawn TXT figures.

� LaTeX tabular tables replace TXT tables.

� LaTeX References replace TXT References.

� LaTeX Index added.

� Preface added.

Caltech’s “Usage Policy”, inherited from the original Pronouns, states:

You are granted permission for individual, educational, research and
non-commercial reproduction, distribution, display and performance
of this work in any format.

For copyright purposes, the author reserves all rights to Pronouns, Second Edi-
tion which aren’t covered by Caltech’s “Usage Policy” applying to Pronouns
[27].

Postscript and PDF versions of the original Pronouns are also available on
the author’s PLANETQUANTUM.COM website [26].

The author’s M.S. thesis and undergraduate adviser was Frederick B.
Thompson [34].

3

Introduction

Certain substitutions and abbreviations occur in English which are not well
understood yet that we would like to understand better so that we may im-
plement them in computer natural language systems intended for man-machine
communication. These include pronouns and other function words like those
below in Figure 0.1 acting both in isolation and with each other.

I me my myself mine we
us our ours ourselves you your
yours yourself yourselves he him his
himself she her hers herself it
its itself they them their theirs
themselves this that these those one
ones oneself other others all none
some any each which what who
whom whose another do does did
done doing so

Figure 0.1. Pronouns and Other Function Words

As well, we have noun phrases modified by demonstratives, Head Deletion,
and Equi-NP Deletion. Bloomfield [2] defined substitution as a replacement
operation.

A substitute is a linguistic form or grammatical feature which, un-
der certain conventional circumstances, replaces any one of a class
of linguistic forms. Thus, in English, the substitute I replaces any
singular-number substantive expression, provided that this substan-
tive expression denotes the speaker of the utterance in which the
substitute is used.

In this thesis we will be concerned with pronouns. Possibly because this
will be the only chance we get, we should note the wide variety of substitution
mechanisms in general. Examples (0.2)-(0.11) are from Sag [30].

(0.2) Do It Anaphor
Jerry won’t prove that theorem; Alice will do it.
[do it = prove that theorem]

(0.3) Sentential It Anaphor
I believe that she means business and you’d better believe it too.
[it = that she means business]

4

(0.4) Null Complement
They asked me to leave but I refused ϕ.
[ϕ = to leave]

(0.5) Ones Pronominalization
Betsy has a blue car, and Randy has a red one.
[one = car]

(0.6) Verb Phrase Deletion
Joan wouldn’t eat a Quarter Pounder, but Annie would ϕ.
[ϕ = eat a Quarter Pounder]

(0.7) Sluicing
Someone has drunk my entire six-pack of Schlitz Light, but I don’t know
who ϕ.
[ϕ = has drunk my entire six-pack of Schlitz-Light]

(0.8) Stripping
Gwendolyn snorts cocaine, but ϕ1 not ϕ2 in her own apartment.
[ϕ1 = Gwendolyn (does), ϕ2 = snort cocaine]

(0.9) Gapping
Erichman duped Haldeman and Nixon ϕ Mitchell.
[ϕ = duped]

(0.10) Conjunction Reduction
Mitchell lied to the committee and ϕ was sentenced last year.
[ϕ = Mitchell]

(0.11) So Anaphor
Mitchell said he was innocent and Nixon said so too.
[so = he was innocent]

To this list we can add pronominalizations. Examples (0.12)-(0.14) are from
Lees and Klima [22].

(0.12) Reflexive Pronominalization
Mary’s father supported himself.
[himself = Mary’s father]

(0.13) Pronominalization
Mary’s father supported her.
[her = Mary]

5

(0.14) Reciprocal Pronominalization
John and Mary kissed each other.
[each other = John and Mary]

And we might add (0.15) and (0.16) as well.

(0.15) Head Deletion
Joan’s cat purrs but Mary’s ϕ doesn’t.
[ϕ = cat]

(0.16) Equi-NP Deletion
John is afraid of ϕ cutting himself.
[ϕ = John’s]

Clearly, this list starts to grow very large with addition or refinement and
it is probably safe to say that many volumes could be written on substitution
processes without putting it to bed. This thesis is about pronouns and chaining
of pronouns, and so is much narrower in scope. But this is not much comfort
if the goals are not clearly in sight. We are just as lost in the middle of Lake
Michigan as we are in the middle of the Pacific Ocean if we don’t have a horizon
to steer us by.

Part of the problem with investigations of anaphora today is that there is no
horizon to steer by. Even though work on anaphora continues in an intelligent
way, little progress is being made towards a really comprehensive theory. Instead
we have a lot of scattered and independent results.

One goal of this thesis, besides talking about pronouns, is to seek out an
algorithmic framework on which to build theory. Accordingly, various data
structures such as nodes, C-S-N trees, and chaining tables are created for this
purpose. Hopefully, the reader will recognize these data structures as too sim-
plistic and will be moved to improve upon them. This thesis is, by no means at
all, a solution to pronouns. At best, it may be a small compass in the middle
of Lake Michigan, but this is our approach.

1 Fundamentals

1.1 Introduction

This chapter describes notation and basic ideas that will be used throughout
this thesis. Hopefully, most of the notation described in this chapter is already
familiar to the reader, but if not, then this chapter should be self-contained
enough to be understandable by a reader with less experience.

1.2 Sentences

Sentences are numbered and are kept separate from the text of discussion
for ease of reference. For example, (1.1) is from Huddleston [13] and is an
example of a Bach Peters sentence.

6

(1.1) The boy who was fooling her kissed the girl who loved him.

Ungrammatical sentences are prefixed with an asterisk (*) and sen-
tences of questionable grammaticality are prefixed with a question mark
(?). Here, (1.3) is from Chomsky [5].

(1.2) *John killed herself.

(1.3) ?Colorless green ideas sleep furiously.

Subscripts are used to indicate identity between constituents, meaning
roughly that they mean the same thing or denote the same referent. More prop-
erly, we may think of constituents having the same subscript as being chained
together. Below, (1.4) and (1.5) are from Bresnan [3].

(1.4) Some studentsI think theyI are smarter than theyI are.

(1.5) *Some studentsI think some studentsI are smarter than some studentsI
are.

Sometimes we enclose information in brackets at the beginning or end of
a sentence. This same notation is also sometimes used as an alternative to
subscripts in identifying constituents. Here, (1.6) is from Bresnan [3], (1.7) and
(1.8) are from Roberts [28] and (1.9) is from Bloom and Hayes [1].

(1.6) My uncle has never ridden a camel but his brother has, although it was
lame. [it = camel]

(1.7) Men are mortal. [All men are mortal]

(1.8) Men are waiting. [Some men are waiting]

(1.9) [Seeing a picture of John Smith] That’s John Smith.

A deletion site is indicated by a ϕ. Example (1.10) is from Hockett [12].

(1.10) I like the fresh candy better than the stale ϕ. [ϕ = candy]

Deletion sites arising from transformations like Equi-NP Deletion are
treated similar to pronouns in this paper. Although there are many differ-
ent kinds of deletion sites with distinct properties, we won’t pay attention to
this distinction in this thesis.

The symbol= is used between sentences to indicate that they are equivalent,
while the symbol ̸= is used between sentences to indicate that they are not
equivalent. Below, (1.11)-(1.14) are from Ross [29].

(1.11) If John can, he will do it. =

(1.12) If he can, John will do it.

(1.13) John will do it if he can. ̸=
(1.14) He will do it if John can.

7

1.3 Noun Phrases

Quantified noun phrases are noun phrases modified by quantifiers.
Examples (1.15)-(1.18) are quantified noun phrases.

(1.15) all female astronauts

(1.16) at least 10 sexual perverts

(1.17) many notorious criminals

(1.18) nearly a dozen Unicorns

Genitives are possessive noun phrases. Examples (1.19)-(1.22) are gen-
itives.

(1.19) Uncle Iggy’s

(1.20) my cobra’s

(1.21) the Nazi war criminal’s

(1.22) the alien creatures’

A noun phrase can be generic, specific, or nonspecific, indicated respec-
tively by (1.23)-(1.25) from Kuno [16].

(1.23) A cat is a malicious animal. [generic]

(1.24) I have a cat at home, but hate it. [specific]

(1.25) I want to get a cat for myself. [nonspecific]

A plural noun phrase can be collective or distributive. Examples (1.26)-
(1.28) are from Fauconnier [7].

(1.26) The men gathered. [collective]

(1.27) The men took off their hats. [distributive]

(1.29) The men carried the couch. [ambiguous]

Sentence (1.29) is ambiguous because it can mean either (1.30) or (1.31).

(1.30) Each man of the men carried the couch.

(1.31) The team of men carried the couch.

Smith [33] has also noticed this distinction. This explains why (1.32)-(1.35)
below are ambiguous.

(1.32) John and Mary bought the new book by John Steinbeck.

(1.33) Bricks and stones make strong walls.

(1.34) George and Marmaduke have dogs.

(1.35) Gerry likes ice cream and cake.

8

1.4 Pronouns

Pronouns are cross-classified by person, plural, gender, animate, reflexive,
attributive possessive, and predicative possessive features among others.

First person pronouns are given in (1.36).

(1.36) I, me, myself, my, mine, we, us, our, ours, ourselves.

Second person pronouns are given in (1.37).

(1.37) you, yourself, yourselves, your, yours

Third person pronouns are given in (1.38).

(1.38) she, he, it, they, her, him, them, herself, himself, itself, themselves, his,
its, their, hers, theirs

Singular pronouns are given in (1.39).

(1.39) I, me, myself, my, mine, you, yourself, your, yours, she, he, it, her, him,
herself, himself, itself, his, its, hers

Plural pronouns are given in (1.40).

(1.40) we, us, our, ours, ourselves, you, yourselves, your, yours, they, them,
themselves, their, theirs

Pronouns with female gender are given in (1.41).

(1.41) she, her, herself, hers

Pronouns with male gender are given in (1.42).

(1.42) he, him, himself, his

Animate pronouns are given in (1.43).

(1.43) I, me, myself, mine, you, yourself, yourselves, your, yours, she, he, they,
her, him, herself, himself, themselves, his, their, hers, theirs

Inanimate pronouns are given in (1.44).

(1.44) it, they, them, itself, themselves, its, theirs

Reflexive pronouns are given in (1.45).

(1.45) myself, yourself, yourselves, herself, himself, itself, themselves

Attributive possessive pronouns are given in (1.46).

(1.46) my, your, her, his, its, their

9

Predicative possessive pronouns are given in (1.47).

(1.47) mine, yours, hers, his, its, theirs

Besides the pronouns given above, we also have ones pronouns and reciprocal
pronouns. Ones pronouns are given in (1.48).

(1.48) one, oneself, one’s

Reciprocal pronouns are given in (1.49).

(1.49) each other, one another, each other’s, one another’s

1.5 Features

We use three kinds of features in this thesis. The symbol + indicates
presence of a feature. The symbol - indicates absence of a feature. And the
symbol ? indicates that the presence or absence of a feature is either unspecified
or not applicable. In the coming chapters, we will speak of agreement of features.
A ? feature agrees with any other feature. The only time two features do not
agree is when we are comparing a + and a - feature. Using = to indicate
agreement and ̸= to indicate nonagreement, we have Figure 1.50.

+ = + + = ? + ̸= -
? = + ? = ? ? = -
- ̸= + - = ? - = -

Figure 1.50. Agreement and Nonagreement between Features

1.6 Parse Trees

Sentence parse trees are only drawn schematically in this thesis as extra
detail is unnecessary. Parse trees shown more or less represent the surface struc-
ture of a sentence. Clause dominating nodes are labelled S and clause conjoining
nodes are labelled C. In this thesis, genitives and adjectives are not treated as
arising from transformations, but as occuring in the base component. Below,
example (1.51) is from Huddleston [13] and example (1.52) is from Grosu [9].

(1.51) The man who lives next door said that he would mow my lawn.

S

the man S said that S

who lives next door he would mow my lawn

10

(1.52) Somebody seduced Bill’s sister, but no one will ever seduce Jack’s and she
knows it.

C

S but S and S

somebody seduced
Bill’s sister

no one will
ever seduce
Jack’s ϕ

she knows it

1.7 Clauses

Adverbial clauses are clauses beginning with an adverb. Some examples
are (1.53)-(1.57) below.

(1.53) after Fido made a mess on the carpet

(1.54) before George kisses Betty

(1.55) since John is an asshole

(1.56) until Cathy behaves herself

(1.57) although Lile flunked all his classes

Clauses complemented with that are that clauses. Example (1.58) is a that
clause.

(1.58) that Snoopy is a cat

Clauses modified by the For-To Transformation are infinitive clauses.
Example (1.59) is an infinitive clause.

(1.59) for Ruth to choose

Clauses modified by the Possessive-Ing Transformation are genitive
clauses. Example (1.60) is a genitive clause.

(1.60) Mary’s kissing Bob

Clauses modified by WH-Fronting Transformation but not the Ques-
tion Transformation and which modify noun phrases are relative clauses.
Examples (1.61)-(1.65) are relative clauses.

(1.61) who ate five hamburgers

(1.62) that has a leaky faucet

(1.63) which doesn’t run

(1.64) whom he gave it to

11

(1.65) whose life isn’t worth a postage stamp

Clauses without embedded subordinate clauses are simplex. In exam-
ple (1.66) from Ross[29], the simplexes are (1.67)-(1.69). In example (1.70),
from Huddleston [13], the simplexes are (1.71)-(1.73). In example (1.74), from
Huddleston, the simplexes are (1.75)-(1.77).

(1.66) Realizing that he was unpopular didn’t disturb Oscar.

S

S didn’t disturb Oscar

ϕ’s realizing that S

he was unpopular

ϕ precedes he
ϕ commands he
ϕ precedes Oscar

Oscar commands ϕ
Oscar commands he

(1.67) S didn’t disturb Oscar

(1.68) ϕ’s realizing that S

(1.69) he was unpopular

(1.70) My neighbor who is pregnant said that she was very happy.

S

my neighbor S said that S

who is pregnant she was very happy

neighbor precedes she
neighbor commands she

(1.71) my neighbor said that S

(1.72) who is pregnant

(1.73) she was very happy

12

(1.74) The pilot who shot at it hit the Mig that chased him.

S

the pilot S hit the Mig S

who shot at it that chased him

pilot precedes him
pilot commands him
it precedes the Mig
Mig commands it

(1.75) the pilot hit the Mig

(1.76) who shot at it

(1.77) that chased him

1.8 Precedes and Commands

The precedes and commands relations, first described by Langacker [19],
are defined below in (1.78) and (1.79).

(1.78) precedes Relation
A node A precedes another node B if

(a) neither A nor B dominates the other, and

(b) A occurs before B (in preorder traversal)

(1.79) commands Relation
A node A commands another node B if

(a) neither A nor B dominates the other, and

(b) the S-node that most immediately dominates A also dominates B

Another relation that will be useful is the is separate from relation defined
below in (1.80).

(1.80) is separate from Relation
A node R is separate from another node B if

(a) neither A nor B dominates the other, and

(b) the lowest node in the tree dominating A and B is a C-node.

We will see that precedes, commands, and is separate from are useful in
determining when pronominalization is or isn’t possible.

In example (1.81), A precedes B, A commands B, and E commands A. We
don’t have A precedes A, B precedes A, B precedes B, A commands A, or B
commands B.

13

(1.81)

S

A B

A precedes B
A commands B
B commands A

In (1.82), A precedes B, A is separate from B, and B is separate from A.
In (1.83), A precedes B and A commands B. In (1.84), A precedes B and B
commands A. In (1.85), A precedes B, H is separate from B, and B is separate
from A.

(1.82)

C

A B

A precedes B
A is separate from B

A precedes B

(1.83)

S

A S

B

A precedes B
A commands B

14

(1.84)

S

S B

A

A precedes B
B commands A

(1.85)

C

S S

A B

A precedes B
A is separate from B
B is separate from A

Examples (1.86)-(1.89) are from Langacker [19].

(1.86) The mosquito which bit Algernon was killed by him. [him = Algernon]

S

the mosquito S was killed by him

which bit Algernon

Algernon precedes him
him precedes Algernon

15

(1.87) The mosquito which bit him was killed by Algernon. [him = Algernon]

S

the mosquito S was killed by Algernon

which bit him

him precedes Algernon
Algernon precedes him

(1.88) Algernon killed the mosquito which bit him. [him = Algernon]

S

Algernon killed the mosquito S

which bit him

Algernon precedes him
him commands Algernon

(1.89) He killed the mosquito which bit Algernon. [he ̸= Algernon]

S

He killed the mosquito S

which bit Algernon

he precedes Algernon
Algernon commands he

The Precedes and Commands Rule, essentially as stated by Langacker [19],
is given in (1.90) below.

(1.90) Precedes and Commands Rule
A pronoun P may be used to pronominalize a noun phrase NP unless

(a) P precedes NP, and

16

(b) P commands NP or P is separate from NP

Note that the Precedes and Commands Rule explains the grammaticality
and ungrammaticality of (1.86)-(1.89). These further examples from Ross [29]
should drive the point home.

(1.91) After John Adams woke up, he was hungry. [he = John Adams]

(1.92) That Oscar was unpopular didn’t disturb him. [him = Oscar]

(1.93) For your brother to refuse to pay taxes would get him into trouble. [him
= your brother]

(1.94) Anna’s complaining about Peter infuriated him. [him = Peter]

(1.95) The possibility that Fred will be unpopular doesn’t bother him. [him =
Fred]

S

S P

NP

NP precedes P
P commands NP

(1.96) After he woke up, John Adams was hungry. [he = John Adams]

(1.97) That he was unpopular didn’t disturb Oscar. [he = Oscar]

(1.98) For him to refuse to pay taxes would get your brother into trouble. [him
= your brother]

(1.99) Anna’s complaining about him infuriated Peter. [him = Peter]

(1.100) The possibility that he will be unpopular doesn’t bother Fred. [him =
Fred]

S

S NP

P

P precedes NP
NP commands P

(1.101) John Adams was hungry after he woke up. [he = John Adams]

17

(1.102) Oscar wasn’t disturbed that he was unpopular. [he = Oscar]

(1.103) It would get your brother into trouble for him to refuse to pay taxes. [him
= your brother]

(1.104) Peter was infuriated at Anna’s complaining about him. [him = Peter]

(1.105) Fred isn’t bothered by the possibility that he will be unpopular. [he =
Fred]

S

NP S

P

NP precedes P
NP commands P

(1.106) *He was hungry after John Adams woke up. [he = John Adams]

(1.107) *He wasn’t disturbed that Oscar was unpopular. [he = Oscar]

(1.108) *It would get him into trouble for your brother to refuse to pay taxes.
[him = your brother]

(1.109) *He was infuriated at Anna’s complaining about Peter. [he = Peter]

(1.110) *He isn’t bothered by the possibility that Fred will be unpopular. [he =
Fred]

S

P S

NP

P precedes NP
P commands NP

Examples (1.111) and (1.112) from Langacker [19] illustrate the Precedes
and Commands Rule for conjoined structures.

18

(1.111) Penelope cursed Peter and slandered him. [him = Peter]

C

S and S

Penelope cursed Peter ϕ slandered him

Peter precedes him
Peter is separate from him
him is separate from Peter

(1.112) *Penelope cursed him and slandered Peter. [him = Peter]

C

S and S

Penelope cursed him ϕ slandered Peter

him precedes Peter
him is separate from Peter
Peter is separate from him

Examples (1.113) and (1.114) adapted from Chiba [4] involve Equi-NP Dele-
tion.

(1.113) The interest in visiting Las Vegas that Mary displayed is typical of gam-
blers.

S

the interest in S S is typical of gamblers

ϕ’s visiting Las Vegas that Mary displayed

ϕ precedes Mary

19

2 Resolution Module

2.1 Introduction

In the previous chapter we touched upon some basic notions such as the
precedes, commands, and is separate from relations. We will see in the com-
ing chapters how these concepts give rise to a very promising approach to the
problem of pronoun resolution.

The algorithm we shall describe won’t be complete in the sense that we
will elaborate and refine it in later chapters and after we are done it will need
elaboration and refinement, but it will be set in firm soil so that we have a
foundation on which to build. Because personal and reflexive pronouns are
easiest, these are the pronouns we shall consider first. But before we go any
farther, let us take time out to indicate something of the environment and
structure of the module that does resolving of pronouns in a natural language
system, the Resolution module.

2.2 Environment

The center of a natural language system is the Language Processor module
which is divided into five submodules. These are the Language Driver, Pre-
procesor, Parser, Semantic Processor, and Output Processor as indicated in
Figure 2.1.

Language
Driver

Preprocessor Parser Semantic
Processor

Output
Processor

Figure 2.1. Submodules of the Language Processor

Briefly, from the point of view of the Language Processor, the following hap-
pens. A user types input at a terminal which is picked up by the Operating
System of the natural language system. The Operating System maintains in-
formation about the user including the language version he is in as well as his
state in that version. The user’s state is known as his prefix. The Operating
System, after picking up a user’s input calls a Process Input routine of the Lan-
guage Driver in the Language Processor. Once in the Language Driver, the first
module to be called upon is the Preprocessor.

The Preprocessor in the Language Processor compresses blanks in the input
string, straps right and left delimiters about it, recognizes and builds parsing

20

graph arcs over identifiers and numbers, and looks the identifiers up in the
lexicon. After calling the Preprocessor, the Language Driver calls the Parser.

The Parser in the Language Processor parses the output. of the Preprocessor
using an algorithm such as the Kay algorithm and can handle any general
rewrite rule grammar. Of course, since a sentence may be ambiguous, more than
one system parse tree may be passed back by the Parser. If no good parsings are
found, then the Syntax Diagnostics routine of the Syntax Diagnostics module
of the natural language system is called. Otherwise, if there are good parsings,
then the Language Driver calls the Semantic Processor on the output of the
Parser.

The Semantic Processor is driven by the syntax of a system parse tree into
making calls on semantic routines which can be postprocedures (called on their
arguments after their arguments evaluate themselves), preprocedures (called on
their arguments before their arguments evaluate themselves), and syntax pro-
cedures (called at syntax time during parsing before preprocedures and post-
procedures are called during semantic processing). On return to the Language
Driver, the Language Driver calls the Output Processor on the output of the
Semantic Processor.

The Output Processor does some relatively menial processing such as re-
moving duplicate lines from the output line list which will be sent back to the
Operating System. The Output Processor is able to handle ambiguous output
and removes diagnostic messages if at least one of the outputs is good.

On completion of the call on the Output Processor, the Language Driver
returns to the Operating System and the Operating System displays the output
line list on the user’s terminal, at the same time updating its information on
the user.

From the discussion of the precedes, commands, and is separate from rela-
tions in the previous chapter, we know that information about the syntax of the
input sentence is critical to the resolving of pronouns in the input sentence. On
the other hand, for semantic processing to carry out the processing it needs to
carry out, the placing of information on the chaining of pronouns must already
be placed in the system parse tree of the input sentence.

The logical conclusion of these two observations indicates that pronoun res-
olution takes place after parsing, but before semantic processing. This relation-
ship of the Resolution module with the other modules of the Language Processor
is indicated in Figure 2.2.

Language
Driver

Preprocessor Parser Pronoun
Resolution

Semantic
Processor

Output
Processor

21

Figure 2.2. Resolution Module within the Language Processor

In practice, this formulation may not be quite correct because there can be
other versions than English which will have nothing to do with the Pronoun
Resolution module and so what we end up doing is making the Resolution
module accessible via a semantic preprocedure which is associated with the
parsing of the right delimiter of a sentence. So instead, what happens is that
the first semantic preprocedure to be called will be the procedure which handles
Pronoun Resolution.

2.3 Structure inside the Resolution Module

The Resolution module is partitioned into seven submodules besides a Global
Declarations module. These are the Node Processor, Parser, Primary Utilities,
Secondary Utilities, Table Processor, Table Interpreter, and Resolution Driver
modules. The reader should not confuse the Parser of the Language Processor
with the Parser of the Pronoun Resolution module which have entirely different
functions. The relationship of these submodules of the Resolution module is
indicated below in Figure 2.3.

22

Resolution
Driver

Table
Processor

Secondary
Utilities

Primary
Utilities

Node
Processor

Parser
Table

Interpreter

Figure 2.3. Structure of the Resolution Module

Not shown is the Global Declarations module which does not have any pro-
cedures itself, but merely defines data structures. The Global Declarations
submodule is accessible by all other submodules of the Resolution module.

3 Global Declarations

The Global Declarations module defines the data structures accessible to
other modules within the pronoun resolution module. The Global Declarations
module is shown below in Figure 3.1.

23

#globals.py
import sys
from typing import TextIO
from enum import Enum, IntEnum
from typing import Optional
class FeatureIndex(IntEnum): #Feature indices.

PNF = 0 #Pronoun Feature
FPF = 1 #First Person Feature
SPF = 2 #Second Person Feature
TPF = 3 #Third Person Feature
PLF = 4 #Plural Feature
GNF = 5 #Gender Feature
ANF = 6 #Animate Feature
RPF = 7 #Reflexive Feature
GEN = 8 #Genitive Feature

N_FEATURES = len(FeatureIndex) #Number of Features
class NodeId(Enum): #Identifies the type of node.

C_NODE = 0 #Represents a C-node.
S_NODE = 1 #Represents an S-node.
N_NODE = 2 #Represents an N-node.
E_NODE = 3 #Represents an E-node.

class Feature(Enum): #Linguistic feature values.
PLUS = 0 #Has this feature.
MINUS = 1 #Doesn’t have this feature.
QUESTION = 2 #Might or might not have this feature.

Features = list[Feature] #list of Feature enums

Figure 3.1. Global Declarations Module (Part I)

24

class Node: #Base node class
Current tree
_tree: Optional[’Node’] = None
def __init__(self):

self.number: int = 0
self.up_link: Optional[’Node’] = None
self.down_link: Optional[’Node’] = None
self.left_link: Optional[’Node’] = None
self.right_link: Optional[’Node’] = None
self.thread_link: Optional[’Node’] = None
self.np_link: Optional[’Node’] = None
self.chain_link: Optional[’Node’] = None
self.col_link: Optional[’Node’] = None
self.ftr: Features = [Feature.QUESTION] * N_FEATURES
self.id: NodeId = NodeId.C_NODE
self.lit: str = ""
self.end_col_link: Optional[’Node’] = None
self.pred_link: Optional[’Node’] = None
self.succ_link: Optional[’Node’] = None
self.sub: str = ’ ’

@classmethod
def tree(cls) -> Optional[’Node’]:

return cls._tree
@classmethod
def set_tree(cls, new_tree: ’Node’) -> None:

cls._tree = new_tree

Figure 3.1. Global Declarations Module (Part II)

Basically, our data structures are C-S-N trees, chaining tables, and the nodes
they involve. It will help to get some feel for these data structures before we go
on to other chapters.

3.1 Nodes

There are four kinds of nodes: C-nodes, S-nodes, N-nodes, and E-nodes. C-
nodes, S-nodes, and N-nodes occur in C-S-N trees and correspond to conjoined
structures, sentences, and noun phrases. E-nodes occur in chaining tables. The
fields of the C-nodes, S-nodes, N-nodes, and E-nodes are as indicated in Fig-
ure 3.1.

3.2 C-S-N Trees

A C-S-N tree has three kinds of nodes: C-nodes, S-nodes, and N-nodes.
Link fields which are relevant to C-S-N trees are up_link, down_link,

25

left_link, right_link, thread_link, pred_link, and succ_link.
An example of a C-S-N tree is given in Figure 3.2.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.2. C-S-N Tree

3.3 Chaining Tables

A chaining table contains N-nodes, E-nodes, and one S-node for keeping
track of the chaining table. Link fields relevant to chaining tables are np_link,
chain_link, col_link, end_col_link, pred_link, and succ_link.
Chaining tables and C-S-N trees are connected through their N-nodes. An
example of a chaining table is given in Figure 3.3.

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.3. Chaining Table

3.4 C-Nodes

A C-node has the following fields: up_link, down_link, left_link,
right_link, thread_link, and number. C-nodes correspond to conjoined
sentences and conjoined subordinate clauses.

26

3.5 S-Nodes

An S-node has exactly the same fields as a C-node and is only distinguished
from a C-node by its NodeId. S-nodes correspond to sentences and subordinate
clauses.

3.6 N-Nodes

An N-node has the following fields: lit, ftr, up_link, down_link,
thread_link, np_link, chain_link, col_link, end_col_link,
pred_link, succ_link, and number. N-nodes correspond to noun phrases
without attached subordinate clause modifiers.

3.7 E-Nodes

An E-node has the following fields: sub, ftr, np_link, chain_link,
and col_link. An E-node may be thought of as a copy of its np_link with
a slightly more defined set of features.

3.8 lit Field

The lit field of an N-node is a string pointer to the string that the N-
node represents. The lit field is actually unnecessary in an N-node, but is
convenient for displaying intermediate results. Function view_node_str of
the Node Processor and some other procedures that display intermediate results
use this field.

3.9 sub Field

The sub field of an E-node is a character representing the subscript of the
E-node. The sub field of an E-node, like the lit field of an N-node, is an
unnecessary field, but is convenient for displaying intermediate results.

3.10 ftr Field

The ftr field of an N-node or E-node is an array of Feature’s representing
the feature set of the N-node or E-node to which it corresponds. A Feature
can be a PLUS, MINUS, or QUESTION as described in the previous chapter.
The offsets PNF, FPF, SPF, TPF, PLF, GNF, ANF, and RPF are used to access
elements of the ftr array. The accessed elements are pronoun feature, first per-
son feature, second person feature, third person feature, plural feature, gender
feature, animate feature, and reflexive feature. The number of Feature’s is
N_FEATURES. Figure 3.4 shows some examples of the settings of ftr for some
typical noun phrases.

27

Features
PNF FPF SPF TPF PLF GNF ANF RPF

John - - - + - - + -
flowers - - - + + ? - -

he + - - + - - + -
them + - - + + ? ? -

I + + - - - ? + -
you + - + - - ? + -
her + - - + - + + -

myself + + - - - ? + +
herself + - - + - + + +
itself + - - + - ? - +

Figure 3.4. ftr Settings for Some Typical Noun Phrases

3.11 up link Field

The up_link field of a C-node, S-node, or N-node links to the parent node
of the C-node, S-node, or N-node in the C-S-N tree in which it occurs. An
example of a C-S-N tree with up_link’s shown is given in Figure 3.5.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.5. C-S-N Tree with up_link’s Shown

3.12 down link Field

The down_link field of a C-node, S-node, or N-node links to the first child
node of the C-node, S-node, or N-node in the C-S-N tree in which it occurs. An
example of a C-S-N tree with down_link’s shown is given in Figure 3.6.

28

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.6. C-S-N Tree with down_link’s Shown

3.13 left link Field

The left_link field of a C-node, S-node, or N-node links to the left brother
node of the C-node, S-node, or N-node in the C-S-N tree in which it occurs. An
example of a C-S-N tree with left_link’s shown is given in Figure 3.7.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.7. C-S-N Tree with left_link’s Shown

3.14 right link Field

The right_link field of a C-node, S-node, or N-node links to the right
brother node of the C-node, S-node, or N-node in the C-S-N tree in which it
occurs. An example of a C-S-N tree with right_link’s shown is given in
Figure 3.8.

29

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.8. C-S-N Tree with right_link’s Shown

3.15 thread link Field

The thread_link field of a C-node, S-node, or N-node links to the first
node traversed after the C-node, S-node, or N-node in a preorder traversal of the
C-S-N tree in which it occurs. An example of a C-S-N tree with thread_link’s
shown is given in Figure 3.9.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.9. C-S-N Tree with thread_link’s Shown

3.16 number Field

C-node, S-node, or N-node have a number field which is the number that
would be assigned to that node if the nodes of the C-S-N tree in which it occurs
are numbered in a preorder traversal. An example of a C-S-N tree with number
fields shown is given in Figure 3.10.

30

1

2 7

3 4 8 9 10

5 6 11 12

Figure 3.10. C-S-N Tree with number Fields Shown

3.17 np link Field

For an E-node, the np_link is the N-node to which it is attached. Con-
ceptually, we think of the E-node as being a copy of the N-node except for its
subscript and different set of Feature’s, chain_link, and col_link. The
np_link is just a way of avoiding duplication of information. For an N-node,
the np_link is always itself. An example of a chaining table with np_link’s
shown is given in Figure 3.11.

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.11. Chaining Table with up_link’s Shown

3.18 chain link Field

The chain_link of an E-node is another E-node representing the sub-
stitute to which the first E-node is attached. When chaining is obligatory,
an N-node is chained to an N-node. An example of a chaining table with
chain_link’s shown is given in Figure 3.12.

31

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.12. Chaining Table with chain_link’s Shown

3.19 col link Field

The col_link field of an E-node or N-node links together the elements of
a column in a table. An N-node is always on top of a column with E-nodes
underneath. An example of a chaining table with col_link’s shown is given
in Figure 3.13.

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.13. Chaining Table with col_link’s Shown

3.20 end col link Field

The end_col_link field of an N-node links to the end of the column
of E-nodes lying under this N-node. An example of a chaining table with
end_col_link’s shown is given in Figure 3.14.

32

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.14. Chaining Table with end_col_link’s Shown

3.21 pred link Field

The pred_link field of an N-node links to the preceding N-node found in a
preorder traversal of the C-S-N tree in which it occurs. An example of a C-S-N
tree with pred_link’s shown is given in Figure 3.15.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.15. C-S-N Tree with pred_link’s Shown

An example of a chaining table with pred_link’s shown is given in Fig-
ure 3.16

33

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.16. Chaining Table with pred_link’s Shown

3.22 succ link Field

The succ_link field of an N-node links to the succeeding N-node found
in a preorder traversal of the C-S-N tree in which it occurs. An example of a
C-S-N tree with succ_link’s shown is given in Figure 3.17.

C1

S1 S3

N1 S2 N4 S4 N7

N2 N3 N5 N6

Figure 3.17. C-S-N Tree with succ_link’s Shown

An example of a chaining table with succ_link’s shown is given in Fig-
ure 3.18.

34

S1

N1 N2 N3 N4

E1a E2a E3a E4a

E1b E2b

E1c

Figure 3.18. Chaining Table with succ_link’s Shown

4 Node Processor

The Node Processor module contains functions new_c_node,
new_s_node, new_n_node, and new_e_node and has the skeleton shown
below in Figure 4.1.

#node_proc.py
from globals import *
def new_c_node() -> Node:
def new_s_node() -> Node:
def new_n_node() -> Node:
def new_e_node() -> Node:

Figure 4.1. Skeleton of the Node Processor

new_c_node, new_s_node, new_n_node, and new_e_node generate,
respectively, a new C-node, S-node, N-node, or E-node, with their fields ini-
tialized and are rather straightforward functions. These are shown below in
Figures 4.2-4.5.

Function new_c_node returns a new C-node.

def new_c_node() -> Node:
return new_node(NodeId.C_NODE)

Figure 4.2. Function new_c_node

Function new_s_node returns a new S-node.

35

def new_s_node() -> Node:
return new_node(NodeId.S_NODE)

Figure 4.3. Function new_s_node

Function new_n_node returns a new N-node.

def new_n_node() -> Node:
answer = new_node(NodeId.N_NODE)
answer.lit = ""
answer.ftr = [Feature.QUESTION] * N_FEATURES
answer.end_col_link = None
answer.pred_link = None
answer.succ_link = None
answer.np_link = answer
return answer

Figure 4.4. Function new_n_node

Function new_e_node returns a new E-node.

def new_e_node() -> Node:
answer = new_node(NodeId.E_NODE)
answer.sub = ’ ’
answer.ftr = [Feature.QUESTION] * N_FEATURES
return answer

Figure 4.5. Function new_e_node

4.1 Function view node str

There is one output procedure in the Node Processor that has not been
discussed above that we need to know about, because we will be looking at some
of its output for short while. This is procedure view_node_str which takes
as an argument a NodePointer and outputs it in readable form. Otherwise,
procedure view_node_str does no processing of its own, and so we do not
need to know the details of its inner workings. For us it is enough to be able to
understand the output. Function view_node_str has the form indicated in
Figure 4.6.

def view_node_str(node: Node) -> str:
"""Formatted string representation of node."""
...

Figure 4.6. Skeleton of Function view_node_str

36

Some typical output of procedure view_node_str is shown below in Fig-
ure 4.7 where a chaining table is listed. (Links from the chaining table to its
associated C-S-N tree are also listed by procedure view_node_str.)

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:5, th:3, nu:2)
3 (N, lit:June, ftr:[---+-++-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3b,
pr:0, su:4, nu:3)

3a (E, sub:A, ftr:[---+-++-], np:3, ch:0, co:3b)
3b (E, sub:B, ftr:[---+-++-], np:3, ch:6a, co:0)
4 (N, lit:flowers, ftr:[---++?--], up:2, dn:0,

lt:3, rt:0, th:5, np:4, ch:0, co:4a, ec:4b,
pr:3, su:6, nu:4)

4a (E, sub:A, ftr:[---++?--], np:4, ch:0, co:4b)
4b (E, sub:B, ftr:[---++?--], np:4, ch:7a, co:0)
5 (S, up:1, dn:6, lt:2, rt:0, th:6, nu:5)
6 (N, lit:she, ftr:[+--+-++-], up:5, dn:0,

lt:0, rt:7, th:7, np:6, ch:0, co:6a, ec:6a,
pr:4, su:7, nu:6)

6a (E, sub:A, ftr:[+--+-++-], np:6, ch:0, co:0)
7 (N, lit:them, ftr:[+--++??-], up:5, dn:0,

lt:6, rt:0, th:0, np:7, ch:0, co:7a, ec:7a,
pr:6, su:0, nu:7)

7a (E, sub:A, ftr:[+--++??-], np:7, ch:0, co:0)

Figure 4.7. Typical Output from Function view_node_str

(C= C-node, S= S-node, N= N-node, E= E-node, lit= lit field, sub= sub
field, ftr = ftr field, up = up_link, dn = down_link, lt = left_link,
rt = right_link, th = thread_link, nu = number, np = np_link, ch
= chain_link, co = col_link, ec = end_col_link, pr = pred_link,
and su = succ_link)

5 Parser

The Parser module defines function parse and has the form shown below
in Figure 5.1.

#parse_proc.py
from lexicon import *
from node_proc import *
def parse(obj) -> Node:

Figure 5.1. Skeleton of the Parser

37

Function parse accepts as input a system focus representation and sys-
tem parse tree that has been generated by a computer natural language sys-
tem. The output of parse is a C-S-N tree incorporating the information con-
tained in the system parse tree and system focus. The system focus represents
the natural language system’s focus of attention. This will be gone into in more
detail in Chapter 13.

The representation of the system tree inputted to parse is system depen-
dent, and so the details of parse are also system dependent. As the internals
of parse are heavily dependent upon and rather involved for any system, we
won’t go into the details of parse for any particular system here. Hopefully,
the reader may glean enough information from the multitude of examples pre-
sented in this thesis to get an idea of what parse does. In any case, lack of an
actual algorithm for parse isn’t so bad since the ideas presented in this thesis
are really still in an early stage and it is enough to concentrate on them.

Even though the input to the Parser is not well defined, the output is.
The Parser builds from the system parse tree it is given the corresponding C-
S-N tree with all up_link’s, down_link’s, left_link’s, right_link’s,
thread_link’s, and number’s set to what is expected. Consider example
(5.2) below.

(5.2) June hates flowers, but she waters them anyway.

C

S but S

June hates flowers she waters them anyway

When procedure parse is called on the system parse tree representing (5.2),
we get the following output in Figure 5.3.

Features
PNF FPF SPF TPF PLF GNF ANF RPF

June - - - + - + + -
flowers - - - + + ? - -

she + - - + - + + -
them + - - + + ? ? -

38

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:5, th:3, nu:2)
3 (N, lit:June, ftr:[---+-++-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3b,
pr:0, su:4, nu:3)

4 (N, lit:flowers, ftr:[---++?--], up:2, dn:0,
lt:3, rt:0, th:5, np:4, ch:0, co:4a, ec:4b,
pr:3, su:6, nu:4)

5 (S, up:1, dn:6, lt:2, rt:0, th:6, nu:5)
6 (N, lit:she, ftr:[+--+-++-], up:5, dn:0,

lt:0, rt:7, th:7, np:6, ch:0, co:6a, ec:6a,
pr:4, su:7, nu:6)

7 (N, lit:them, ftr:[+--++??-], up:5, dn:0,
lt:6, rt:0, th:0, np:7, ch:0, co:7a, ec:7a,
pr:6, su:0, nu:7)

Figure 5.3. Typical Output from parse

Listing of nodes in Figure 5.3 is done by procedure view_node_str of the
Node Processor described in Chapter 4. The C-S-N parse tree is slightly more
complicated when focusing is taken into account, but for the time being we will
ignore its effects. We will discuss the effects of focusing on C-S-N parse trees in
Chapter 13.

When Figure 5.3 is drawn as a tree, we get a structure like Figure 5.4.

C1

S2 S5

N3 N4 N6 N7

Figure 5.4. Output from parse Drawn as a Tree

6 Primary Utilities

The Primary Utilities module defines the boolean functions precede,
command, and separate corresponding to the precedes, commands, and is
separate from relations discussed in Chapter 1. The skeleton of the primary
utilitites module is shown below in Figure 6.1.

39

#primary_uty.py
from globals import *
def precede(n1: Node, n2: Node) -> bool:
def command(n1: Node, n2: Node) -> bool:
def separate(n1: Node, n2: Node) -> bool:

Figure 6.1. Skeleton of the Primary Utilities

The precede, command, and separate functions do just what is expected.
They are true if and only if the precedes, commands, and is separate from
relations hold between their arguments. Along with function dominate which
is used by separate, these functions are shown below in Figures 6.2-6.5.

Function precede is true if and only if n1 precedes n2.

def precede(n1: Node, n2: Node) -> bool:
return n1.number < n2.number

Figure 6.2. Function precede

Function dominate is true if and only if n1 dominates n2.

def dominate(n1: Node, n2: Node) -> bool:
if n1.number == n2.number:

return True
child = n1.down_link
while child is not None:

if dominate(child, n2):
return True

child = child.right_link
return False

Figure 6.3. Function dominate

Function command is true if and only if n1 commands n2.

def command(n1: Node, n2: Node) -> bool:
return dominate(n1.up_link, n2)

Figure 6.4. Function command

Function separate is true if and only if n1 is separate from n2.

40

def separate(n1: Node, n2: Node) -> bool:
parent = n1.up_link
while not dominate(parent, n2):

parent = parent.up_link
return parent.id == NodeId.C_NODE

Figure 6.5. Function separate

7 Secondary Utilities

The Secondary Utiltities module defines functions sc, agr, and rnr. These
stand for Syntactic Conditions, Agreement, and the Reflexive Nonreflexive Rule.
The skeleton of the Secondary Utilities module is shown below in Figure 7.1.

#secondary_uty.py
from primary_uty import *
def sc(n1: Node, n2: Node) -> bool:
def agr(n1: Node, n2: Node) -> bool:
def rnr(n1: Node, n2: Node) -> bool:

Figure 7.1. Skeleton of Secondary Utilities

7.1 Syntactic Conditions

As shown in Chapter 1, certain constraints such as the Precedes and Com-
mands Rule apply in forward pronominalization. Function sc is true whenever
these grosser syntactic constraints are met. In this thesis, we let sc be true
when the Precedes and Commands Rule is satisfied, function sc is shown below
in Figure 7.2.

def sc(n1: Node, n2: Node) -> bool:
return not (precede(n1, n2) and (command(n1, n2) or separate(n1, n2)))

Figure 7.2. Function sc (Syntactic Conditions)

7.2 Agreement

Besides satisfying Syntactic Conditions, there has to be agreement between
a node and its chaining node. First person, second person, third person, plural,
gender, and animate features have to agree in order for one node to chain to
another. Function agr is shown below in Figure 7.3.

41

def agr(n1: Node, n2: Node) -> bool:
ftr1 = n1.ftr
ftr2 = n2.ftr
return (eq_feat(ftr1[FeatureIndex.FPF], ftr2[FeatureIndex.FPF]) and

eq_feat(ftr1[FeatureIndex.SPF], ftr2[FeatureIndex.SPF]) and
eq_feat(ftr1[FeatureIndex.TPF], ftr2[FeatureIndex.TPF]) and
eq_feat(ftr1[FeatureIndex.PLF], ftr2[FeatureIndex.PLF]) and
eq_feat(ftr1[FeatureIndex.GNF], ftr2[FeatureIndex.GNF]) and
eq_feat(ftr1[FeatureIndex.ANF], ftr2[FeatureIndex.ANF]))

Figure 7.3. Function agr (Agreement)

7.3 Equal Features

Function agr uses function eq_feat. eq_feat tests if two Feature’s
are equal. As indicated in Chapter 1, Feature’s are equal unless a PLUS and
MINUS are compared. Function eq_feat is shown below in Figure 7.4.

def eq_feat(f1: Feature, f2: Feature) -> bool:
if f1 == Feature.PLUS:

return f2 != Feature.MINUS
elif f1 == Feature.MINUS:

return f2 != Feature.PLUS
else: # f1 == Feature.QUESTION

return True

Figure 7.4. Function eq_feat (Equal Features)

7.4 Reflexive Nonreflexive Rule

The distinction between reflexive pronouns and nonreflexive pronouns is that
reflexive pronouns cannot chain to an N-node that is outside of the same simplex
in which it occurs, while a nonreflexive pronoun can. This rule will have to be
modified later for genitives, but for now we can suppose that a nonreflexive
pronoun must chain to an N-node outside of the same simplex in which it is
in. Shown in Figure 7.5 is function rnr which is true when the reflexive
nonreflexive rule is satisfied.

42

def rnr(n1: Node, n2: Node) -> bool:
ftr1 = n1.np_link.ftr
ftr2 = n2.np_link.ftr
if ftr2[FeatureIndex.GEN] == Feature.PLUS:

return False
elif ftr1[FeatureIndex.RPF] == Feature.PLUS:

return (n1.up_link == n2.up_link)
and (ftr1[FeatureIndex.GEN] == Feature.MINUS)

elif ftr1[FeatureIndex.RPF] == Feature.MINUS:
return (n1.up_link != n2.up_link)

or (ftr1[FeatureIndex.GEN] != Feature.MINUS)

Figure 7.5. Function rnr (Reflexive Nonreflexive Rule)

8 Table Processor I

The Table Processor module defines function chaining which takes as
input a C-S-N tree and returns its chaining table. The actions of function
chaining in the Table Processor can only be understood by example, and this
is what this chapter provides. In Chapter 9, we’ll look at the actual algorithms
and, in Chapter 10, we’ll look at some actual output.

So, let us consider sentence (8.1) below.

(8.1) John wants to give June a present, but he isn’t sure she’ll like it.

C

S but S

John wants S he isn’t sure S

for ϕ to give
June a present

she’ll like it

The Parser builds from the system parse tree of (8.1) the corresponding C-
S-N tree with six N-nodes which have the lit fields and ftr’s indicated below
in Figure 8.2.

43

Features
PNF FPF SPF TPF PLF GNF ANF RPF

John - - - + - - + -
ϕ + ? ? ? ? ? ? -

June - - - + - + + -
present - - - + - ? - -

he + - - + - - + -
she + - - + - + + -
it + - - + - ? - -

Figure 8.2. lit Fields and ftr’s of the N-Nodes

The C-S-N tree itself has the form of Figure 8.3 below.

C1

S1 S3

N1 S2 N5 S4

N2 N3 N4 N6 N7

Figure 8.3. C-S-N Parse Tree

After parse is called, chaining is called. The first thing to happen is
the initialization of the chaining table for the C-S-N tree. Below each N-node
is suspended, by the col_link of the N-node, a new E-node with subscript
A. Each new E-node has a np_link back to the N-node it is suspended from.
As well, the Feature’s of each new E-node are copied from the N-node it is
suspended from. Attached to the first and last N-nodes is an S-node to make
it easy to keep track of the first and last N-nodes in the chaining table. The
chaining table, as it looks immediately after initialization, is shown below in
Figure 8.4.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

Figure 8.4. Chaining Table Immediately after Initialization

44

The chaining algorithm works by walking backwards across N-nodes in
the top row and walking down columns of E-nodes. The chaining algorithm
works on two N-nodes at a time. If the first is compatible with the second
under Syntactic Conditions, Agreement, and the Reflexive Nonreflexive Rule,
then the E-nodes underneath the first N-node that agree with the second N-node
are chain_link’ed to copies of the second N-node.

The last N-node in the table is it, the chaining table begins with it. it can’t
chain to itself, so the second N-node in the description above becomes she and
the chaining algorithm compares it to she. Syntactic Conditions are satisfied,
but Agreement isn’t.

sc(it, she) = True
agr(it, she) = False

The chaining algorithm now moves from she to he and compares it to he.
Again Syntactic Conditions are satisfied, but Agreement isn’t.

sc(it, he) = True
agr(it, he) = False

The chaining algorithm moves from he to present and compares it to
present. This time, Syntactic Conditions, Agreement, and the Reflexive Nonre-
flexive Rule are satisfied.

sc(it, present) = True
agr(it, present) = True
rnr(it, present) = True

Since all three rules are satisfied, a chain from ita to a copy of present may be
created. This happens if ita and present agree, and they do.

agr(ita, present) = True

The chaining algorithm makes a new E-node copy of present, presentb,

and hangs it below present. The chain_link of presentb is set to ita and

the semantic features of ita, but not the syntactic features, are copied into the
semantic features of presentb. After chaining presentb to ita, the chaining table

appears as shown in Figure 8.5.

45

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

presentb

Figure 8.5. Chaining Table after Chaining presentb to ita

The chaining algorithm now moves from present to June. Syntactic Con-
ditions are satisfied, but Agreement isn’t.

sc(it, June) = True
agr(it, June) = False

The chaining algorithm now moves from June to ϕ. This time, all three
rules, Syntactic Conditions, Agreement, and the Reflexive Nonreflexive Rule are
satisfied.

sc(it, ϕ) = True
agr(it, ϕ) = True
rnr(it, ϕ) = True

Since all three rules are satisfied, E-nodes under it that agree with ϕ chain to
copies of ϕ. ita is compared to ϕ, and it is seen that they agree.

agr(ita, ϕ) = True

The chaining algorithm makes a new E-node copy of ϕ, ϕb, and hangs it

below ϕ. The chain_link of ϕb is set to ita and the semantic features of

ita are copied into the semantic features of ϕb. After chaining ϕb to ita, the

chaining table appears as shown in Figure 8.6.

46

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

ϕb presentb

Figure 8.6. Chaining Table After Chaining ϕb to ita

The chaining algorithm now moves to John and compares John to it.
Syntactic Conditions hold, but Agreement does not.

sc(it, John) = True
agr(it, John) = False

Having exhausted all possible combinations with it, the chaining algorithm
considers she.

The chaining algorithm tries comparing she to it, but Syntactic Conditions
are not satisfied.

sc(she, it) = False

The chaining algorithm moves from it to she, but she can’t chain to she,
so the chaining algorithm moves to he. This time Syntactic Conditions are
satisfied, but Agreement isn’t.

sc(she, he) = True
agr(she, he) = False

The chaining algorithm now moves from he to present where again Syn-
tactic Conditions are satisfied, but Agreement isn’t.

sc(she, present) = True
agr(she, present) = False

The chaining algorithm moves from present to June. This time all three
rules are satisfied.

sc(she, June) = True
agr(she, June) = True
rnr(she, June) = True

47

As all three rules are satisfied, E-nodes under she that agree with June chain to
copies of June. shea is compared to June, and it is seen that they agree.

agr(shea, June) = True

The chaining algorithm makes a new E-node copy of June, Juneb, and hangs

it below June. The chain_link of Juneb is set to shea and the semantic

features of shea are copied into the semantic features of Juneb. After chaining

Juneb to shea, the chaining table appears as shown in Figure 8.7.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

ϕb Juneb presentb

Figure 8.7. Chaining Table after Chaining Juneb to shea

The chaining algorithm now moves from June to ϕ and compares she to
ϕ. All three rules are satisfied.

sc(she, ϕ) = True
agr(she, ϕ) = True
rnr(she, ϕ) = True

Copies of ϕ are chain_link’ed to E-nodes under she that agree with ϕ.
shea is compared to ϕ, and it is seen that they agree.

agr(shea, ϕ) = True

A new E-node copy of ϕ, ϕc, is made and hung below ϕ. The chain_link of
ϕc is set to shea and the semantic features of shea are copied into the semantic
features of ϕc. After chaining ϕc to shea, the chaining table appears as shown
in Figure 8.8.

48

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

ϕb Juneb presentb

ϕc

Figure 8.8. Chaining Table after Chaining ϕc to shea

The chaining algorithm now moves from ϕ to John and compares she to
John. It is seen that Syntactic Conditions are satisfied, but Agreement isn’t.

sc(she, John) = True
agr(she, John) = False

This completes the creation of chain_link’s to E-nodes under she. The
chaining algorithm now considers he.

he is compared to it, but it is seen that Syntactic Conditions aren’t satisfied.

sc(he, it) = False

The chaining algorithm moves from it to she, but again, Syntactic Con-
ditions aren’t satisfied.

sc(he, she) = False

The chaining algorithm moves from she to he, but he can’t chain to he,
so the chaining algorithm moves from he to present. This time Syntactic
Conditions are satisfied, but Agreement isn’t.

sc(he, present) = True
agr(he, present) = False

The chaining algorithm moves from present to June, and similar results
happen.

sc(he, June) = True
agr(he, June) = False

49

Next, the chaining algorithm moves from June to ϕ, and, this time, all
three rules, Syntactic Conditions, Agreement, and the Reflexive Nonreflexive
Rule, are satisfied.

sc(he, ϕ) = True
agr(he, ϕ) = True
rnr(he, ϕ) = True

Copies of he are chain_link’ed to E-nodes under ϕ that agree with he. hea
is compared to ϕ, and it is seen that they agree.

agr(hea, ϕ) = True

A new E-node copy of ϕ, ϕd, is made and hung below ϕ. The chain_link of

ϕd is set to hea and the semantic features of hea are copied into the semantic

features of ϕd. After chaining ϕd to hea, the chaining table appears as shown

in Figure 8.9.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

ϕb Juneb presentb

ϕc

ϕd

Figure 8.9. Chaining Table after Chaining ϕd to hea

The chaining algorithm now moves from ϕ to John and he is compared to
John. It is seen that all three rules are satisfied.

sc(he, John) = True
agr(he, John) = True
rnr(he, John) = True

So, copies of he are chain_link’ed to E-nodes under John that agree with he.
hea is compared to John, and it is seen that they agree.

50

agr(hea, John) = True

A new E-node copy of John, Johnb, is made and hung below John. The

chain_link of Johnb is set to hea and the semantic features of hea are copied

into the semantic features of Johnb. After chaining Johnb to hea, the chaining

table appears as shown in Figure 8.10.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

Johnb ϕb Juneb presentb

ϕc

ϕd

Figure 8.10. Chaining Table after Chaining Johnb to hea

Having completed the processing of he, the chaining algorithm considers
present. present is not a pronoun though, so the chaining algorithm moves
on to June. Similarly, June is not a pronoun, so the chaining algorithm now
considers ϕ.

The chaining algorithm compares ϕ to it, and it is seen that Syntactic
Conditions don’t hold.

sc(ϕ, it) = False

The chaining algorithm moves from it to she, she to he, he to present,
and present to June with little more success.

sc(ϕ, she) = False
sc(ϕ, he) = False
sc(ϕ, present) = False
sc(ϕ, June) = False

The chaining algorithm moves from June to ϕ, but ϕ can’t chain to ϕ. So
now, the chaining algorithm moves from ϕ to John. This time, all three rules
are satisfied.

51

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True

Copies of John are chain_link’ed to E-nodes under ϕ that agree with John.
ϕa is compared to John, and it is seen that they agree.

agr(ϕa, John) = True

Thus, new copy of John, Johnc is made. Johnc is chain_link’ed to ϕa. The
semantic features of ϕa are copied into Johnc. After chaining Johnc to ϕa, the
chaining table appears as shown in Figure 8.11.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

Johnb ϕb Juneb presentb

Johnc ϕc

ϕd

Figure 8.11. Chaining Table after Chaining Johnc to ϕa

ϕb is compared to John, and it is seen that they don’t agree.

agr(ϕb, John) = False

ϕb and John don’t agree because when ϕb was chain_link’ed to ita, the

semantic features of ita were copied into the semantic features of ϕb. Hence, the

information that ita was inanimate was copied into ϕb preventing a ridiculous

chain: JohnX is chained to ϕb is chained to ita. ϕc, which was chained to shea,

is compared to John, and it is seen that they don’t agree.

agr(ϕc, John) = False

On the other hand, ϕd, which was chained to hea, does agree with John.

52

agr(ϕd, John) = True

Thus, new copy of John, Johnd is made. Johnd is chain_link’ed to ϕd. The

semantic features of ϕd are copied into the semantic features of Johnd. After

chaining Johnd to ϕd, the chaining table appears as shown in Figure 8.12.

S

John ϕ June present he she it

Johna ϕa Junea presenta hea shea ita

Johnb ϕb Juneb presentb

Johnc ϕc

Johnd ϕd

Figure 8.12. Chaining Table after Chaining Johnd to ϕd

Having completed chaining to ϕ, the chaining algorithm moves to John.
John is not a pronoun, so the chaining algorithm now stops as it has reached
the end of the chaining table. This makes Figure 8.12, above, the finished
chaining table.

9 Table Processor II

From Chapter 8 we know that the Table Processor module defines function
chaining which takes as input a C-S-N tree and which returns as output the
chaining table of the inputted C-S-N tree. In Chapter 8, we illustrated the kind
of processing the Table Processor does by working through in detail a typical
example. In this chapter, we will go into the particulars of the Table Processor
algorithms. In Chapter 10, we’ll look at some actual output.

The skeleton of the Table Processor module is shown below in Figure 9.1.
The Table Processor module defines function chaining.

53

#table_proc.py
from node_proc import *
from parser import *
from secondary_uty import *
def chaining(nnodes: list[Node]) -> None:

Figure 9.1. Skeleton of the Table Processor

Function chaining is the algorithm we described by example in Chapter 8.
chaining takes as input a C-S-N tree and returns the chaining table of the
inputted C-S-N tree. Function chaining is shown below in Figure 9.2.

def chaining(nnodes: list[Node]) -> None:
init_table(nnodes)
for n1 in reversed(nnodes):

For each N-node n1 that is a pronoun, call
procedure chaining_n.
if n1.ftr[FeatureIndex.PNF] == Feature.PLUS:

chaining_n(nnodes, n1)

Figure 9.2. Function chaining

The first thing function chaining does is to call init_table which
initializes the chaining table as described in the previous chapter. Function
init_table is shown in Figure 9.3.

def init_table(nnodes: list[Node]) -> None:
last = None
for n in nnodes:

n.col_link = new_e_node()
n.col_link.ftr = n.ftr.copy()
n.col_link.np_link = n
n.col_link.sub = ’A’
n.end_col_link = n.col_link
n.pred_link = last
if last is not None:

last.succ_link = n
last = n

Figure 9.3. Function init_table

Below each N-node is hung a new E-node with Feature’s copied from
the N-node and np_link back to the N-node. The col_link’s and
end_col_link’s of the N-nodes are updated accordingly. pred_link’s
and succ_link’s are set in init_table using the thread_link’s
which were established by the Parser. Finally, at the end of the procedure,

54

table, a variable global inside the Table Processor, has its left_link and
right_link set to the first and last N-node.

For each N-node that is a pronoun, function chaining calls procedure
chaining_n. chaining_n calls refl_chaining or non_refl_chaining
depending on whether or not the inputted N-node is reflexive or not. Function
chaining_n is shown below in Figure 9.4.

def chaining_n(nnodes: list[Node], n1: Node) -> None:
if n1.ftr[FeatureIndex.RPF] == Feature.PLUS:

Inputted pronoun N-node n1 is reflexive.
refl_chaining(n1)

elif n1.ftr[FeatureIndex.RPF] == Feature.MINUS:
Inputted pronoun N-node n1 isn’t reflexive.
non_refl_chaining(nnodes, n1)

Figure 9.4. Function chaining_n

Function non_refl_chaining handles nonreflexive pronouns. Function
non_refl_chaining is shown below in Figure 9.5.

def non_refl_chaining(nnodes: list[Node], n1: Node) -> None:
for n2 in reversed(nnodes):

if n2 != n1:
chaining_n_to_n(n1, n2)

Figure 9.5. Function non_refl_chaining

non_refl_chaining calls chaining_n_to_n on the inputted N-node
with each N-node in the chaining table except itself. This takes care of creating
all chains to E-nodes lying under the inputted N-node.

Function refl_chaining is very similar to non_refl_chaining and is
shown below in Figure 9.6.

def refl_chaining(n1: Node) -> None:
n2 = simplex_pred(n1)
while n2 is not None:

if n2 != n1:
chaining_n_to_n(n1, n2)

n2 = simplex_pred(n2)

Figure 9.6. Function refl_chaining

Since the N-node inputted to refl_chaining is reflexive,
refl_chaining only calls chaining_n_to_n on the inputted N-node with
each preceding N-node within the same simplex as the inputted N-node.

55

Function simplex_pred, which is used by procedure refl_chaining,
simply returns the N-node that preceeds the inputted N-node in the same sim-
plex. Function simplex_pred is shown below in Figure 9.7.

def simplex_pred(n1: Node) -> Node:
answer = n1
while True:

answer = answer.left_link
if answer is None or answer.id == NodeId.N_NODE:

return answer

Figure 9.7. Function simplex_pred

Function chaining_n_to_n is called by procedures refl_chaining and
non_refl_chaining and is shown below in Figure 9.8.

def chaining_n_to_n(n1: Node, n2: Node) -> None:
if not sc(n1, n2) or not agr(n1, n2) or not rnr(n1, n2):

return
old_end_col_link = n1.end_col_link
e1 = n1
while e1 != old_end_col_link:

e1 = e1.col_link
if e1 is not None:

chaining_e_to_n(e1, n2)

Figure 9.8. Function chaining_n_to_n

If Syntactic Conditions, Agreement, and the Reflexive Nonreflexive Rule
hold, then procedure chaining_e_to_n is called on each E-node lying under-
neath the first N-node.

Function chaining_e_to_n, which is called by procedure
chaining_n_to_n, is shown below in Figure 9.9.

def chaining_e_to_n(e1: Node, n2: Node) -> None:
if agr(e1, n2):

new_chain(e1, n2)

Figure 9.9. Function chaining_e_to_n

If the inputted E-node agrees with the inputted N-node, then a new chain is
created from a copy of the inputted N-node to the inputted E-node by calling
procedure new_chain.

Function new_chain, which is called by chaining_e_to_n, is shown
below in Figure 9.10.

56

def new_chain(e1: Node, n2: Node) -> None:
n = new_e_node()
n.np_link = n2
n.chain_link = e1
n.sub = chr(ord(n2.end_col_link.sub) + 1)
Replace n2 nonsyntactic QUESTION (?) features
for i in range(N_FEATURES):

if n2.ftr[i] == Feature.QUESTION and i != FeatureIndex.RPF:
n.ftr[i] = e1.ftr[i]

else:
n.ftr[i] = n2.ftr[i]

n2.end_col_link.col_link = n
n2.end_col_link = n

Figure 9.10. Function new_chain

Function new_chain creates a copy of the inputted N-node and
chain_link’s it to the inputted E-node. Semantic Feature’s are copied
from the inputted E-node to the copy of the inputted N-node.

10 Table Processor III

The last two chapters have been devoted to describing the Table Processor.
It is time for some real examples: The first example we present in this chapter
was produced using procedure view_node_str of the Node Processor along
with some intermittent write statements indicating when LIP are entering and
exiting some of the more important routines and some or their results. We start
off with the example first presented in Chapter 8.

(10.1) John wants to give June a present, but he isn’t sure she’ll like it.

C

S but S

John wants S he isn’t sure S

for ϕ to give
June a present

she’ll like it

Processing (10.1) with some intermediate output gives the listing shown
below. This is somewhat verbose, but later examples will be cleaner and shorter,
though less detailed output.

57

Features
PNF FPF SPF TPF PLF GNF ANF RPF

John - - - + - - + -
ϕ + ? ? ? ? ? ? -

June - - - + - + + -
present - - - + - ? - -

he + - - + - - + -
she + - - + - + + -
it + - - + - ? - -

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:0, ec:0,
pr:0, su:0, nu:3)

4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:0, ec:0,
pr:0, su:0, nu:5)

6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,
lt:5, rt:7, th:7, np:6, ch:0, co:0, ec:0,
pr:0, su:0, nu:6)

7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,
lt:6, rt:0, th:8, np:7, ch:0, co:0, ec:0,
pr:0, su:0, nu:7)

8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:0, ec:0,
pr:0, su:0, nu:9)

10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:0, ec:0,
pr:0, su:0, nu:11)

12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,
lt:11, rt:0, th:0, np:12, ch:0, co:0, ec:0,
pr:0, su:0, nu:12)

chaining
init_table

58

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5a,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6a,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7a,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

59

init_table: exiting
chaining_n(it)

non_refl_chaining(it)
chaining_n_to_n(it, she)

sc(it, she) = True
agr(it, she) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, he)

sc(it, he) = True
agr(it, he) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, present)

sc(it, present) = True
agr(it, present) = True
rnr(it, present) = True
chaining_e_to_n(ita, present)

agr(ita, present) = True
new_chain(ita, present)

new_chain: create presentb
new_chain: create presentbˆita

60

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5a,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6a,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

61

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(it, June)

sc(it, June) = True
agr(it, June) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, ϕ)

sc(it, ϕ) = True
agr(it, ϕ) = True
rnr(it, ϕ) = True
chaining_e_to_n(ita, ϕ)

agr(ita, ϕ) = True
new_chain(ita, ϕ)

new_chain: create ϕb
new_chain: create ϕbˆita

62

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5b,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6a,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

63

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(it, John)

sc(it, John) = True
agr(it, John) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(she)

non_refl_chaining(she)
chaining_n_to_n(she, it)

sc(she, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(she, he)

sc(she, he) = True
agr(she, he) = False

chaining_n_to_n: exiting
chaining_n_to_n(she, present)

sc(she, present) = True
agr(she, present) = False

chaining_n_to_n: exiting
chaining_n_to_n(she, June)

sc(she, June) = True
agr(she, June) = True
rnr(she, June) = True
chaining_e_to_n(shea, June)

agr(shea, June) = True
new_chain(shea, June)

new_chain: create Juneb
new_chain: create Junebˆshea

64

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5b,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

65

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(she, ϕ)

sc(she, ϕ) = True
agr(she, ϕ) = True
rnr(she, ϕ) = True
chaining_e_to_n(shea, ϕ)

agr(shea, ϕ) = True
new_chain(shea, ϕ)

new_chain: create ϕc
new_chain: create ϕcˆshea

66

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5c,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

67

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(she, John)

sc(she, John) = True
agr(she, John) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(he)

non_refl_chaining(he)
chaining_n_to_n(he, it)

sc(he, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(he, she)

sc(he, she) = False
chaining_n_to_n: exiting
chaining_n_to_n(he, present)

sc(he, present) = True
agr(he, present) = False

chaining_n_to_n: exiting
chaining_n_to_n(he, June)

sc(he, June) = True
agr(he, June) = False

chaining_n_to_n: exiting
chaining_n_to_n(he, ϕ)

sc(he, ϕ) = True
agr(he, ϕ) = True
rnr(he, ϕ) = True
chaining_e_to_n(hea, ϕ)

agr(hea, ϕ) = True
new_chain(hea, ϕ)

new_chain: create ϕd
new_chain: create ϕdˆhea

68

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3a,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5d,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:5d)
5d (E, sub:D, ftr:[+--+--+-], np:5, ch:9a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

69

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(he, John)

sc(he, John) = True
agr(he, John) = True
rnr(he, John) = True
chaining_e_to_n(hea, John)

agr(hea, John) = True
new_chain(hea, John)

new_chain: create Johnb
new_chain: create Johnbˆhea

70

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3b,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:3b)
3b (E, sub:B, ftr:[---+--+-], np:3, ch:9a, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5d,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:5d)
5d (E, sub:D, ftr:[+--+--+-], np:5, ch:9a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

71

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, it)

sc(ϕ, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, she)

sc(ϕ, she) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, he)

sc(ϕ, he) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, present)

sc(ϕ, present) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, June)

sc(ϕ, June) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, John)

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True
chaining_e_to_n(ϕa, John)

agr(ϕa, John) = True
new_chain(ϕa, John)

new_chain: create Johnc
new_chain: create Johncˆϕa

72

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3c,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:3b)
3b (E, sub:B, ftr:[---+--+-], np:3, ch:9a, co:3c)
3c (E, sub:C, ftr:[---+--+-], np:3, ch:5a, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5d,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:5d)
5d (E, sub:D, ftr:[+--+--+-], np:5, ch:9a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

73

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, John)

agr(ϕb, John) = False
chaining_e_to_n: exiting
chaining_e_to_n(ϕc, John)

agr(ϕc, John) = False
chaining_e_to_n: exiting
chaining_e_to_n(ϕd, John)

agr(ϕd, John) = True
new_chain(ϕd, John)

new_chain: create Johnd
new_chain: create Johndˆϕd

74

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3d,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:3b)
3b (E, sub:B, ftr:[---+--+-], np:3, ch:9a, co:3c)
3c (E, sub:C, ftr:[---+--+-], np:3, ch:5a, co:3d)
3d (E, sub:D, ftr:[---+--+-], np:3, ch:5d, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5d,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:5d)
5d (E, sub:D, ftr:[+--+--+-], np:5, ch:9a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

75

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

76

Nodes
1 (C, up:0, dn:2, lt:0, rt:0, th:2, nu:1)
2 (S, up:1, dn:3, lt:0, rt:8, th:3, nu:2)
3 (N, lit:John, ftr:[---+--+-], up:2, dn:0,

lt:0, rt:4, th:4, np:3, ch:0, co:3a, ec:3d,
pr:0, su:5, nu:3)

3a (E, sub:A, ftr:[---+--+-], np:3, ch:0, co:3b)
3b (E, sub:B, ftr:[---+--+-], np:3, ch:9a, co:3c)
3c (E, sub:C, ftr:[---+--+-], np:3, ch:5a, co:3d)
3d (E, sub:D, ftr:[---+--+-], np:3, ch:5d, co:0)
4 (S, up:2, dn:5, lt:3, rt:0, th:5, nu:4)
5 (N, lit:ϕ, ftr:[+??????-], up:4, dn:0,

lt:0, rt:6, th:6, np:5, ch:0, co:5a, ec:5d,
pr:3, su:6, nu:5)

5a (E, sub:A, ftr:[+??????-], np:5, ch:0, co:5b)
5b (E, sub:B, ftr:[+--+-?--], np:5, ch:12a, co:5c)
5c (E, sub:C, ftr:[+--+-++-], np:5, ch:11a, co:5d)
5d (E, sub:D, ftr:[+--+--+-], np:5, ch:9a, co:0)
6 (N, lit:June, ftr:[---+-++-], up:4, dn:0,

lt:5, rt:7, th:7, np:6, ch:0, co:6a, ec:6b,
pr:5, su:7, nu:6)

6a (E, sub:A, ftr:[---+-++-], np:6, ch:0, co:6b)
6b (E, sub:B, ftr:[---+-++-], np:6, ch:11a, co:0)
7 (N, lit:present, ftr:[---+-?--], up:4, dn:0,

lt:6, rt:0, th:8, np:7, ch:0, co:7a, ec:7b,
pr:6, su:9, nu:7)

7a (E, sub:A, ftr:[---+-?--], np:7, ch:0, co:7b)
7b (E, sub:B, ftr:[---+-?--], np:7, ch:12a, co:0)
8 (S, up:1, dn:9, lt:2, rt:0, th:9, nu:8)
9 (N, lit:he, ftr:[+--+--+-], up:8, dn:0,

lt:0, rt:10, th:10, np:9, ch:0, co:9a, ec:9a,
pr:7, su:11, nu:9)

9a (E, sub:A, ftr:[+--+--+-], np:9, ch:0, co:0)
10 (S, up:8, dn:11, lt:9, rt:0, th:11, nu:10)
11 (N, lit:she, ftr:[+--+-++-], up:10, dn:0,

lt:0, rt:12, th:12, np:11, ch:0, co:11a, ec:11a,
pr:9, su:12, nu:11)

11a (E, sub:A, ftr:[+--+-++-], np:11, ch:0, co:0)
12 (N, lit:it, ftr:[+--+-?--], up:10, dn:0,

lt:11, rt:0, th:0, np:12, ch:0, co:12a, ec:12a,
pr:11, su:0, nu:12)

12a (E, sub:A, ftr:[+--+-?--], np:12, ch:0, co:0)

77

The previous example should give enough details away to satisfy the reader’s
curiosity, but the form of the previous example is rather burdensome. From
now on, we’ll keep to a more concise, if less detailed, output. To indicate a
chain_link between two E-nodes, we use the symbol ˆ.

Below are some more examples.

(10.2) Janet saw herself.

S

Janet saw herself

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Janet - - - + - + + -
herself + - - + - + + +

chaining
init_table

Chaining
Janet herself
Janeta herselfa

init_table: exiting
chaining_n(herself)

refl_chaining(herself)
simplex_pred(herself)
simplex_pred: Janet
chaining_n_to_n(herself, Janet)

sc(herself, Janet) = True
agr(herself, Janet) = True
rnr(herself, Janet) = True
chaining_e_to_n(herselfa, Janet)

agr(herselfa, Janet) = True
new_chain(herselfa, Janet)

new_chain: create Janetb
new_chain: create Janetbˆherselfa

78

Chaining
Janet herself
Janeta herselfa
Janetbˆherselfa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(Janet)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
Janet herself
Janeta herselfa
Janetbˆherselfa

(10.3) Janet saw her.

S

Janet saw her

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Janet - - - + - + + -
her + - - + - + + -

chaining
init_table

Chaining
Janet her
Janeta hera

79

init_table: exiting
chaining_n(her)

non_refl_chaining(her)
chaining_n_to_n(her, Janet)

sc(her, Janet) = True
agr(her, Janet) = True
rnr(her, Janet) = True
chaining_e_to_n(hera, Janet)

agr(hera, Janet) = True
new_chain(hera, Janet)

new_chain: create Janetb
new_chain: create Janetbˆhera

Chaining
Janet her
Janeta hera
Janetbˆhera

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
Janet her
Janeta hera
Janetbˆhera

(10.4) *Janet saw himself.

S

Janet saw himself

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Janet - - - + - + + -
himself + - - + - - + +

80

chaining
init_table

Chaining
Janet himself
Janeta himselfa

init_table: exiting
chaining_n(himself)

refl_chaining(himself)
simplex_pred(himself)
simplex_pred: Janet
chaining_n_to_n(himself, Janet)

sc(himself, Janet) = True
agr(himself, Janet) = False

chaining_n_to_n: exiting
simplex_pred(Janet)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
Janet himself
Janeta himselfa

Examples (10.5)-(10.11) are from Lees and Klima [22].

(10.5) The men threw a smokescreen around themselves.

S

the men threw a smokescreen around themselves

Features
PNF FPF SPF TPF PLF GNF ANF RPF

men - - - + + - + -
smokescreen - - - + - ? - -
themselves + - - + + ? ? +

81

chaining
init_table

Chaining
men smokescreen themselves
mena smokescreena themselvesa

init_table: exiting
chaining_n(themselves)

refl_chaining(themselves)
simplex_pred(themselves)
simplex_pred: smokescreen
chaining_n_to_n(themselves, smokescreen)

sc(themselves, smokescreen) = True
agr(themselves, smokescreen) = False

chaining_n_to_n: exiting
simplex_pred(smokescreen)
simplex_pred: men
chaining_n_to_n(themselves, men)

sc(themselves, men) = True
agr(themselves, men) = True
rnr(themselves, men) = True
chaining_e_to_n(themselvesa, men)

agr(themselvesa, men) = True
new_chain(themselvesa, men)

new_chain: create menb
new_chain: create menbˆthemselvesa

Chaining
men smokescreen themselves
mena smokescreena themselvesa
menbˆthemselvesa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(men)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

82

Chaining
men smokescreen themselves
mena smokescreena themselvesa
menbˆthemselvesa

(10.6) The men found a smokescreen around them.

S

the men threw a smokescreen around them

Features
PNF FPF SPF TPF PLF GNF ANF RPF

men - - - + + - + -
smokescreen - - - + - ? - -

them + - - + + ? ? -

chaining
init_table

Chaining
men smokescreen them
mena smokescreena thema

init_table: exiting
chaining_n(them)

non_refl_chaining(them)
chaining_n_to_n(them, smokescreen)

sc(them, smokescreen) = True
agr(them, smokescreen) = False

chaining_n_to_n: exiting
chaining_n_to_n(them, men)

sc(them, men) = True
agr(them, men) = True
rnr(them, men) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

83

Chaining
men smokescreen them
mena smokescreena thema

(10.7) The men found a smokescreen to be around them.

S

the men found a smokescreen S

for ϕ to be around them

Features
PNF FPF SPF TPF PLF GNF ANF RPF

men - - - + + - + -
smokescreen - - - + - ? - -

them + - - + + ? ? -

chaining
init_table

Chaining
men smokescreen them
mena smokescreena thema

init_table: exiting
chaining_n(them)

non_refl_chaining(them)
chaining_n_to_n(them, smokescreen)

sc(them, smokescreen) = True
agr(them, smokescreen) = False

chaining_n_to_n: exiting
chaining_n_to_n(them, men)

sc(them, men) = True
agr(them, men) = True
rnr(them, men) = True
chaining_e_to_n(thema, men)

agr(thema, men) = True
new_chain(thema, men)

new_chain: create menb
new_chain: create menbˆthema

84

Chaining
men smokescreen them
mena smokescreena thema
menbˆthema

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
men smokescreen them
mena smokescreena thema
menbˆthema

(10.8) The men found a smokescreen and it was around them.

C

S and S

the men found a smokescreen it was around them

Features
PNF FPF SPF TPF PLF GNF ANF RPF

men - - - + + - + -
smokescreen - - - + - ? - -

it + - - + - ? - -
them + - - + + ? ? -

chaining
init_table

Chaining
men smokescreen it them
mena smokescreena ita thema

85

init_table: exiting
chaining_n(them)

non_refl_chaining(them)
chaining_n_to_n(them, it)

sc(them, it) = True
agr(them, it) = False

chaining_n_to_n: exiting
chaining_n_to_n(them, smokescreen)

sc(them, smokescreen) = True
agr(them, smokescreen) = False

chaining_n_to_n: exiting
chaining_n_to_n(them, men)

sc(them, men) = True
agr(them, men) = True
rnr(them, men) = True
chaining_e_to_n(thema, men)

agr(thema, men) = True
new_chain(thema, men)

new_chain: create menb
new_chain: create menbˆthema

Chaining
men smokescreen it them
mena smokescreena ita thema
menbˆthema

86

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(it)

non_refl_chaining(it)
chaining_n_to_n(it, them)

sc(it, them) = False
chaining_n_to_n: exiting
chaining_n_to_n(it, smokescreen)

sc(it, smokescreen) = True
agr(it, smokescreen) = True
rnr(it, smokescreen) = True
chaining_e_to_n(ita, smokescreen)

agr(ita, smokescreen) = True
new_chain(ita, smokescreen)

new_chain: create smokescreenb
new_chain: create smokescreenbˆita

Chaining
men smokescreen it them
mena smokescreena ita thema
menbˆthema smokescreenbˆita

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(it, men)

sc(it, men) = True
agr(it, men) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
men smokescreen it them
mena smokescreena ita thema
menbˆthema smokescreenbˆita

87

(10.9) I told John to protect himself.

S

I told John S

for ϕ to protect himself

Features
PNF FPF SPF TPF PLF GNF ANF RPF

I + + - - - ? + -
John - - - + - - + -

ϕ + ? ? ? ? ? ? -
himself + - - + - - + +

chaining
init_table

Chaining
I John ϕ himself
Ia Johna ϕa himselfa

init_table: exiting
chaining_n(himself)

refl_chaining(himself)
simplex_pred(himself)
simplex_pred: ϕ
chaining_n_to_n(himself, ϕ)

sc(himself, ϕ) = True
agr(himself, ϕ) = True
rnr(himself, ϕ) = True
chaining_e_to_n(himselfa, ϕ)

agr(himselfa, ϕ) = True
new_chain(himselfa, ϕ)

new_chain: create ϕb
new_chain: create ϕbˆhimselfa

88

Chaining
I John ϕ himself
Ia Johna ϕa himselfa

ϕbˆhimselfa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(ϕ)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, himself)

sc(ϕ, himself) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, John)

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True
chaining_e_to_n(ϕa, John)

agr(ϕa, John) = True
new_chain(ϕa, John)

new_chain: create Johnb
new_chain: create Johnbˆϕa

Chaining
I John ϕ himself
Ia Johna ϕa himselfa

Johnbˆϕa ϕbˆhimselfa

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, John)

agr(ϕb, John) = True
new_chain(ϕb, John)

new_chain: create Johnc
new_chain: create Johncˆϕb

89

Chaining
I John ϕ himself
Ia Johna ϕa himselfa

Johnbˆϕa ϕbˆhimselfa
Johncˆϕb

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, I)

sc(ϕ, I) = True
agr(ϕ, I) = True
rnr(ϕ, I) = True
chaining_e_to_n(ϕa, I)

agr(ϕa, I) = True
new_chain(ϕa, I)

new_chain: create Ib
new_chain: create Ibˆϕa

Chaining
I John ϕ himself
Ia Johna ϕa himselfa
Ibˆϕa Johnbˆϕa ϕbˆhimselfa

Johncˆϕb

90

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, I)

agr(ϕb, I) = False
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(I)

non_refl_chaining(I)
chaining_n_to_n(I, himself)

sc(I, himself) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, ϕ)

sc(I, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, John)

sc(I, John) = False
chaining_n_to_n: exiting

non_refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
I John ϕ himself
Ia Johna ϕa himselfa
Ibˆϕa Johnbˆϕa ϕbˆhimselfa

Johncˆϕb

(10.10) I told John to protect me.

S

I told John S

for ϕ to protect me

91

Features
PNF FPF SPF TPF PLF GNF ANF RPF

I + + - - - ? + -
John - - - + - - + -

ϕ + ? ? ? ? ? ? -
me + + - - - ? + -

chaining
init_table

Chaining
I John ϕ me
Ia Johna ϕa mea

init_table: exiting
chaining_n(me)

non_refl_chaining(me)
chaining_n_to_n(me, ϕ)

sc(me, ϕ) = True
agr(me, ϕ) = True
rnr(me, ϕ) = False

chaining_n_to_n: exiting
chaining_n_to_n(me, John)

sc(me, John) = True
agr(me, John) = False

chaining_n_to_n: exiting
chaining_n_to_n(me, I)

sc(me, I) = True
agr(me, I) = True
rnr(me, I) = True
chaining_e_to_n(mea, I)

agr(mea, I) = True
new_chain(mea, I)

new_chain: create Ib
new_chain: create Ibˆmea

Chaining
I John ϕ me
Ia Johna ϕa mea
Ibˆmea

92

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, me)

sc(ϕ, me) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, John)

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True
chaining_e_to_n(ϕa, John)

agr(ϕa, John) = True
new_chain(ϕa, John)

new_chain: create Johnb
new_chain: create Johnbˆϕa

Chaining
I John ϕ me
Ia Johna ϕa mea
Ibˆmea Johnbˆϕa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, I)

sc(ϕ, I) = True
agr(ϕ, I) = True
rnr(ϕ, I) = True
chaining_e_to_n(ϕa, I)

agr(ϕa, I) = True
new_chain(ϕa, I)

new_chain: create Ic
new_chain: create Icˆϕa

Chaining
I John ϕ me
Ia Johna ϕa mea
Ibˆmea Johnbˆϕa
Icˆϕa

93

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(I)

non_refl_chaining(I)
chaining_n_to_n(I, me)

sc(I, me) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, ϕ)

sc(I, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, John)

sc(I, John) = False
chaining_n_to_n: exiting

non_refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
I John ϕ me
Ia Johna ϕa mea
Ibˆmea Johnbˆϕa
Icˆϕa

(10.11) I told John to protect myself.

S

I told John S

for ϕ to protect myself

Features
PNF FPF SPF TPF PLF GNF ANF RPF

I + + - - - ? + -
John - - - + - - + -

ϕ + ? ? ? ? ? ? -
myself + + - - - ? + +

94

chaining
init_table

Chaining
I John ϕ myself
Ia Johna ϕa myselfa

init_table: exiting
chaining_n(myself)

refl_chaining(myself)
simplex_pred(myself)
simplex_pred: ϕ
chaining_n_to_n(myself, ϕ)

sc(myself, ϕ) = True
agr(myself, ϕ) = True
rnr(myself, ϕ) = True
chaining_e_to_n(myselfa, ϕ)

agr(myselfa, ϕ) = True
new_chain(myselfa, ϕ)

new_chain: create ϕb
new_chain: create ϕbˆmyselfa

Chaining
I John ϕ myself
Ia Johna ϕa myselfa

ϕbˆmyselfa

95

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(ϕ)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, myself)

sc(ϕ, myself) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, John)

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True
chaining_e_to_n(ϕa, John)

agr(ϕa, John) = True
new_chain(ϕa, John)

new_chain: create Johnb
new_chain: create Johnbˆϕa

Chaining
I John ϕ myself
Ia Johna ϕa myselfa

Johnbˆϕa ϕbˆmyselfa

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, John)

agr(ϕb, John) = False
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, I)

sc(ϕ, I) = True
agr(ϕ, I) = True
rnr(ϕ, I) = True
chaining_e_to_n(ϕa, I)

agr(ϕa, I) = True
new_chain(ϕa, I)

new_chain: create Ib
new_chain: create Ibˆϕa

96

Chaining
I John ϕ myself
Ia Johna ϕa myselfa
Ibˆϕa Johnbˆϕa ϕbˆmyselfa

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, I)

agr(ϕb, I) = True
new_chain(ϕb, I)

new_chain: create Ic
new_chain: create Icˆϕb

Chaining
I John ϕ myself
Ia Johna ϕa myselfa
Ibˆϕa Johnbˆϕa ϕbˆmyselfa
Icˆϕb

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(I)

non_refl_chaining(I)
chaining_n_to_n(I, myself)

sc(I, myself) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, ϕ)

sc(I, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(I, John)

sc(I, John) = False
chaining_n_to_n: exiting

non_refl_chaining: exiting
chaining_n: exiting

chaining: exiting

97

Chaining
I John ϕ myself
Ia Johna ϕa myselfa
Ibˆϕa Johnbˆϕa ϕbˆmyselfa
Icˆϕb

11 Table Interpreter

The Table Interpreter module defines function interpret and has the form
shown in Figure 11.1.

#table_interp;
from globals import *
def interpret(nnodes: list[Node]) -> list[list[list[Node]]]:

Figure 11.1. Skeleton of the Table Interpreter

Basically, after the chaining table is created, a number of chains are implicitly
defined by the chaining table and it is the job of the Table Interpreter to mesh
these chains back into copies of the system tree, returning all trees defined by
legitimate interpretations.

A nonpronominal E-node with the E-nodes that are traced by walking down
chain_link’s until nil chain_link is reached constitute a chain. A set
of chains defined by the chaining table which cover all the pronominal N-nodes
and do not intersect constitute a legitimate interpretation.

Take the table given in Figure 11.2 as an example.

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita
Johnbˆhea ϕbˆita Junebˆshea presentbˆita
Johncˆϕa ϕcˆshea
Johndˆϕd ϕdˆhea

Figure 11.2. Typical Chaining Table

The chains present in Figure 11.2 are exactly (11.3)-(11.10) given below.
Note that no chain begins with a pronoun. (Here, we are staying with the
convention of Chapter 10 where a “ˆ” symbol indicates a chain_link).

(11.3) Johna
(11.4) Johnbˆhea
(11.5) Johncˆϕa
(11.6) Johndˆϕdˆhea
(11.7) Junea

98

(11.8) Junebˆshea
(11.9) presenta

(11.10) presentbˆita

The only interpretation derivable from Figure 11.2 is (11.11).

(11.11) Johndˆϕdˆhea Junebˆshea presentbˆita

Exactly how chaining information from a table to system parse tree will
have to be system dependent, but we can imagine that noun phrases in a sys-
tem parse tree are some kind of list elements which have linked to them, among
other things, lists corresponding to their semantics. It is up to the Table In-
terpreter to set any chain_link’s inside the semantics of the noun phrases of
the system parse tree. The Semantic Processor module of the system should
then be powerful enough to be able to handle the kind of coordination that
chain_link’s imply.

This strategy has a number of possibilities that simple methods of corefer-
encing are just not able to handle. Consider sentence (11.12) for example.

(11.12) Jack’s house burned down, but he rebuilt it.

We can’t really say that it corefers with Jack’s house as Jack’s house is
some object that existed in the past and has stopped existing while it refers to
some new object. This does not mean that it cannot chain from Jack’s house,
however, and indeed it should. The information the Semantic Processor module
needs to give meaning to it is contained in Jack’s house, and so there must be
a chain_link from Jack’s house to it in order for the Semantic Processor to
give meaning to it.

A similar result holds for quantifiers. We see that (11.13) is not equivalent
to (11.14).

(11.13) Every connoisseur loves his wine and cheese. ̸=
(11.14) Every connoisseur loves every connoisseur’s wine and cheese.

Quite clearly, his cannot be replaced by every connoisseur and preserve the
meaning of the sentence. Instead, (11.13) has more the meaning given by
(11.15).

(11.15) (For all x: x is a connoisseur)(x loves x’s wine and cheese.)

A number of other examples are pointed out by Bresnan [3].

(11.16) All Italians think they are handsome. ̸=
(11.17) All Italians think all Italians are handsome.

(11.18) Every Italian thinks he is handsome. ̸=
(11.19) Every Italian thinks every Italian is handsome.

(11.20) Any Italian would die for his mother. ̸=

99

(11.21) Any Italian would die for and Italian’s mother.

(11.22) Every Italian thinks that he alone is handsome. ̸=
(11.23) *Every Italian thinks that every Italian alone is handsome.

(11.24) One girl claimed that she herself could read Homer. ̸=
(11.25) *One girl claimed that one girl herself could read Homer.

It appears that the proper interpretation for a pronoun chained to quantified
noun phrase within the scope of quantification is for the pronoun to act as
a bound variable.

When the pronoun is outside the scope of quantification, it is a different
story. Consider (11.26) and (11.27) from Evans [6].

(11.26) John owns some sheep and Harry vaccinates them.

(11.27) Mary danced with many boys and they found her interesting.

This time the pronouns are chaining to quantified noun phrases, but do not
themselves lie within the scope of quantification. Instead, they appear to refer
to the range of the quantification.

Similar results hold for (11.28)-(11.31) from Sidner [32].

(11.28) John lost a pen yesterday and Bill found one today.

(11.29) John claimed to have found the solution to the problem, but Bill was sure
he had found it.

(11.30) John wants to catch a fish and eat it for supper.

(11.31) No one would put the blame on himself.

The problems mentioned above are all rather tricky, but viewing them from
the vantage point of chaining sheds more light on them than viewing them
through some kind of coreference. The moral of the story seems to be that
anaphora is not coreference.

Using the Table Interpreter now, we present some more examples.

(11.32) Sue told Sandy about herself.

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Sue - - - + - + + -
Sandy - - - + - + + -

herself + - - + - + + +

chaining
init_table

100

Chaining
Sue Sandy herself
Suea Sandya herselfa

init_table: exiting
chaining_n(herself)

refl_chaining(herself)
simplex_pred(herself)
simplex_pred: Sandy
chaining_n_to_n(herself, Sandy)

sc(herself, Sandy) = True
agr(herself, Sandy) = True
rnr(herself, Sandy) = True
chaining_e_to_n(herselfa, Sandy)

agr(herselfa, Sandy) = True
new_chain(herselfa, Sandy)

new_chain: create Sandyb
new_chain: create Sandybˆherselfa

Chaining
Sue Sandy herself
Suea Sandya herselfa

Sandybˆherselfa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(Sandy)
simplex_pred: Sue
chaining_n_to_n(herself, Sue)

sc(herself, Sue) = True
agr(herself, Sue) = True
rnr(herself, Sue) = True
chaining_e_to_n(herselfa, Sue)

agr(herselfa, Sue) = True
new_chain(herselfa, Sue)

new_chain: create Sueb
new_chain: create Suebˆherselfa

Chaining
Sue Sandy herself
Suea Sandya herselfa
Suebˆherselfa Sandybˆherselfa

101

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(Sue)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
Sue Sandy herself
Suea Sandya herselfa
Suebˆherselfa Sandybˆherselfa

Interpretations
Suebˆherselfa
Sandybˆherselfa

(11.33) *Jill kept talking about himself.

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Jill - - - + - + + -
himself + - - + - - + +

chaining
init_table

Chaining
Jill himself
Jilla himselfa

102

init_table: exiting
chaining_n(himself)

refl_chaining(himself)
simplex_pred(himself)
simplex_pred: Jill
chaining_n_to_n(himself, Jill)

sc(himself, Jill) = True
agr(himself, Jill) = False

chaining_n_to_n: exiting
simplex_pred(Jill)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
Jill himself
Jilla himselfa

Interpretations
NONE

(11.34) Does Jack’s making a pig of himself bother Bill?

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Jack’s - - - + - - + -
pig - - - + - ? + -

himself + - - + - - + +
Bill - - - + - - + -

chaining
init_table

Chaining
Jack’s pig himself Bill
Jack’sa piga himselfa Billa

103

init_table: exiting
chaining_n(himself)

refl_chaining(himself)
simplex_pred(himself)
simplex_pred: pig
chaining_n_to_n(himself, pig)

sc(himself, pig) = True
agr(himself, pig) = True
rnr(himself, pig) = True
chaining_e_to_n(himselfa, pig)

agr(himselfa, pig) = True
new_chain(himselfa, pig)

new_chain: create pigb
new_chain: create pigbˆhimselfa

Chaining
Jack’s pig himself Bill
Jack’sa piga himselfa Billa

pigbˆhimselfa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(pig)
simplex_pred: Jack’s
chaining_n_to_n(himself, Jack’s)

sc(himself, Jack’s) = True
agr(himself, Jack’s) = True
rnr(himself, Jack’s) = False

chaining_n_to_n: exiting
simplex_pred(Jack’s)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
Jack’s pig himself Bill
Jack’sa piga himselfa Billa

pigbˆhimselfa

104

Interpretations
pigbˆhimselfa

(11.35) John wants to give June a present, but he is afraid she won’t like it.

Features
PNF FPF SPF TPF PLF GNF ANF RPF

John - - - + - - + -
ϕ + ? ? ? ? ? ? -

June - - - + - + + -
present - - - + - ? - -

he + - - + - - + -
she + - - + - + + -
it + - - + - ? - -

chaining
init_table

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

init_table: exiting
chaining_n(it)

non_refl_chaining(it)
chaining_n_to_n(it, she)

sc(it, she) = True
agr(it, she) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, he)

sc(it, he) = True
agr(it, he) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, present)

sc(it, present) = True
agr(it, present) = True
rnr(it, present) = True
chaining_e_to_n(ita, present)

agr(ita, present) = True
new_chain(ita, present)

new_chain: create presentb
new_chain: create presentbˆita

105

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

presentbˆita

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(it, June)

sc(it, June) = True
agr(it, June) = False

chaining_n_to_n: exiting
chaining_n_to_n(it, ϕ)

sc(it, ϕ) = True
agr(it, ϕ) = True
rnr(it, ϕ) = True
chaining_e_to_n(ita, ϕ)

agr(ita, ϕ) = True
new_chain(ita, ϕ)

new_chain: create ϕb
new_chain: create ϕbˆita

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

ϕbˆita presentbˆita

106

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(it, John)

sc(it, John) = True
agr(it, John) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(she)

non_refl_chaining(she)
chaining_n_to_n(she, it)

sc(she, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(she, he)

sc(she, he) = True
agr(she, he) = False

chaining_n_to_n: exiting
chaining_n_to_n(she, present)

sc(she, present) = True
agr(she, present) = False

chaining_n_to_n: exiting
chaining_n_to_n(she, June)

sc(she, June) = True
agr(she, June) = True
rnr(she, June) = True
chaining_e_to_n(shea, June)

agr(shea, June) = True
new_chain(shea, June)

new_chain: create Juneb
new_chain: create Junebˆshea

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

ϕbˆita Junebˆshea presentbˆita

107

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(she, ϕ)

sc(she, ϕ) = True
agr(she, ϕ) = True
rnr(she, ϕ) = True
chaining_e_to_n(shea, ϕ)

agr(shea, ϕ) = True
new_chain(shea, ϕ)

new_chain: create ϕc
new_chain: create ϕcˆshea

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

ϕbˆita Junebˆshea presentbˆita
ϕcˆshea

108

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(she, John)

sc(she, John) = True
agr(she, John) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(he)

non_refl_chaining(he)
chaining_n_to_n(he, it)

sc(he, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(he, she)

sc(he, she) = False
chaining_n_to_n: exiting
chaining_n_to_n(he, present)

sc(he, present) = True
agr(he, present) = False

chaining_n_to_n: exiting
chaining_n_to_n(he, June)

sc(he, June) = True
agr(he, June) = False

chaining_n_to_n: exiting
chaining_n_to_n(he, ϕ)

sc(he, ϕ) = True
agr(he, ϕ) = True
rnr(he, ϕ) = True
chaining_e_to_n(hea, ϕ)

agr(hea, ϕ) = True
new_chain(hea, ϕ)

new_chain: create ϕd
new_chain: create ϕdˆhea

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita

ϕbˆita Junebˆshea presentbˆita
ϕcˆshea
ϕdˆhea

109

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(he, John)

sc(he, John) = True
agr(he, John) = True
rnr(he, John) = True
chaining_e_to_n(hea, John)

agr(hea, John) = True
new_chain(hea, John)

new_chain: create Johnb
new_chain: create Johnbˆhea

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita
Johnbˆhea ϕbˆita Junebˆshea presentbˆita

ϕcˆshea
ϕdˆhea

110

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, it)

sc(ϕ, it) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, she)

sc(ϕ, she) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, he)

sc(ϕ, he) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, present)

sc(ϕ, present) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, June)

sc(ϕ, June) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, John)

sc(ϕ, John) = True
agr(ϕ, John) = True
rnr(ϕ, John) = True
chaining_e_to_n(ϕa, John)

agr(ϕa, John) = True
new_chain(ϕa, John)

new_chain: create Johnc
new_chain: create Johncˆϕa

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita
Johnbˆhea ϕbˆita Junebˆshea presentbˆita
Johncˆϕa ϕcˆshea

ϕdˆhea

111

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, John)

agr(ϕb, John) = False
chaining_e_to_n: exiting
chaining_e_to_n(ϕc, John)

agr(ϕc, John) = False
chaining_e_to_n: exiting
chaining_e_to_n(ϕd, John)

agr(ϕd, John) = True
new_chain(ϕd, John)

new_chain: create Johnd
new_chain: create Johndˆϕd

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita
Johnbˆhea ϕbˆita Junebˆshea presentbˆita
Johncˆϕa ϕcˆshea
Johndˆϕd ϕdˆhea

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
John ϕ June present he she it
Johna ϕa Junea presenta hea shea ita
Johnbˆhea ϕbˆita Junebˆshea presentbˆita
Johncˆϕa ϕcˆshea
Johndˆϕd ϕdˆhea

Interpretations
Johndˆϕdˆhea Junebˆshea presentbˆita

112

(11.36) Ernie doesn’t like Bernie, because he is such an asshole.

Features
PNF FPF SPF TPF PLF GNF ANF RPF

Ernie - - - + - - + -
Bernie - - - + - - + -

he + - - + - - + -
asshole - - - + - ? + -

chaining
init_table

Chaining
Ernie Bernie he asshole
Erniea Berniea hea assholea

init_table: exiting
chaining_n(he)

non_refl_chaining(he)
chaining_n_to_n(he, asshole)

sc(he, asshole) = False
chaining_n_to_n: exiting
chaining_n_to_n(he, Bernie)

sc(he, Bernie) = True
agr(he, Bernie) = True
rnr(he, Bernie) = True
chaining_e_to_n(hea, Bernie)

agr(hea, Bernie) = True
new_chain(hea, Bernie)

new_chain: create Bernieb
new_chain: create Berniebˆhea

Chaining
Ernie Bernie he asshole
Erniea Berniea hea assholea

Berniebˆhea

113

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(he, Ernie)

sc(he, Ernie) = True
agr(he, Ernie) = True
rnr(he, Ernie) = True
chaining_e_to_n(hea, Ernie)

agr(hea, Ernie) = True
new_chain(hea, Ernie)

new_chain: create Ernieb
new_chain: create Erniebˆhea

Chaining
Ernie Bernie he asshole
Erniea Berniea hea assholea
Erniebˆhea Berniebˆhea

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
Ernie Bernie he asshole
Erniea Berniea hea assholea
Erniebˆhea Berniebˆhea

Interpretations
Erniebˆhea
Berniebˆhea

12 Genitives

Very little modification to what has been said so far is necessary to implement
attributive possessive pronouns. Recall that the attributive possessive pronouns
are those pronouns listed in (12.1).

114

(12.1) my, our, your, her, his, its, their

Examining sentences like (12.2)-(12.5) reveals that reflexive pronouns don’t
chain to genitives within the same simplex. On the other hand, nonreflexive
pronouns can.

(12.2) Mary’s father killed himself.

(12.3) *Mary’s father killed him.

(12.4) *Mary’s father killed herself.

(12.5) Mary’s father killed her.

The same conclusions also hold for of-genitives. Compare sentences (12.6)-
(12.9) to (12.2)-(12.5).

(12.6) The father of Mary killed himself.

(12.7) *The father of Mary killed him.

(12.8) *The father of Mary killed herself.

(12.9) The father of Mary killed her.

The easiest way to handle genitives, apparently, is to introduce a new
Feature, GEN, for genitive and to modify the Reflexive Nonreflexive Rule to
handle genitives. The new form of the Reflexive Nonreflexive Rule is shown
below in Figure 12.10.

function rnr(n1,n2:NodePointer):boolean;
{Reflexive Nonreflexive Rule}
var ftr1,ftr2:features;

begin
n1:=n1ˆ.np_link;
n2:=n2ˆ.np_link;
ftr1:=n1ˆ.ftr;
ftr2:=n2ˆ.ftr:
if ftr2[GEN]=PLUS then rnr:=false
else case ftr1[RPF] of

PLUS: rnr:=(n1ˆ.up_link=n2ˆ.up_link)
and (ftr1[GEN]==MINUS);

QUESTION: {doesn’t occur};
MINUS: rnr:=(n1ˆ.up_link<>n2ˆ.up_link)

or (ftr1[GEN]<>MINUS);
end;

end;

Figure 12.10. New Reflexive Nonreflexive Rule

The examples following illustrate the interpretation of attributive possessive
pronouns and pronouns in the context of genitives.

115

(12.11) Mary’s mother cooks only for herself.

Features
PNF FPF SPF TPF PLF GNF ANF RPF GEN

Mary’s - - - + - + + - +
mother - - - + - + + - -
herself + - - + - + + + -

(12.12) Mary’s mother cooks only for her.

Features
PNF FPF SPF TPF PLF GNF ANF RPF GEN

Mary’s - - - + - + + - +
mother - - - + - + + - -

her + - - + - + + - ?

chaining
init_table

Chaining
Mary’s mother her
Mary’sa mothera hera

init_table: exiting
chaining_n(her)

non_refl_chaining(her)
chaining_n_to_n(her, mother)

sc(her, mother) = True
agr(her, mother) = True
rnr(her, mother) = True
chaining_e_to_n(hera, mother)

agr(hera, mother) = True
new_chain(hera, mother)

new_chain: create motherb
new_chain: create motherbˆhera

Chaining
Mary’s mother her
Mary’sa mothera hera

motherbˆhera

116

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(her, Mary’s)

sc(her, Mary’s) = True
agr(her, Mary’s) = True
rnr(her, Mary’s) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
Mary’s mother her
Mary’sa mothera hera

motherbˆhera

Interpretations
motherbˆhera

(12.13) Mary’s mother cooks only for her mother.

Features
PNF FPF SPF TPF PLF GNF ANF RPF GEN

Mary’s - - - + - + + - +
mother1 - - - + - + + - -

her + - - + - + + - ?
mother2 - - - + - + + - -

chaining
init_table

Chaining
Mary’s mother1 her mother2
Mary’sa mother1a hera mother2a

117

init_table: exiting
chaining_n(her)

non_refl_chaining(her)
chaining_n_to_n(her, mother2)

sc(her, mother2) = False
chaining_n_to_n: exiting
chaining_n_to_n(her, mother1)

sc(her, mother1) = True
agr(her, mother1) = True
rnr(her, mother1) = True
chaining_e_to_n(hera, mother1)

agr(hera, mother1) = True
new_chain(hera, mother1)

new_chain: create mother1b
new_chain: create mother1bˆhera

Chaining
Mary’s mother1 her mother2
Mary’sa mother1a hera mother2a

mother1bˆhera

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(her, Mary’s)

sc(her, Mary’s) = True
agr(her, Mary’s) = True
rnr(her, Mary’s) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining: exiting

Chaining
Mary’s mother1 her mother2
Mary’sa mother1a hera mother2a

mother1bˆhera

Interpretations
mother1bˆhera

118

13 Focusing

Extrasentential anaphora and ellipsis is possible through the mainte-
nance of a focus of conversation. This maintenance is known as focusing and
has been described at length by Grosz [10] and Sidner [32]. By focus of conver-
sation, we mean the common view of the participants of conversation of what
their conversation is about. Focusing is useful because it allows the participants
of conversation to avoid redundant repetition of old material. Assuming focus-
ing is desirable in a computer natural language system, how do we implement
it?

Grosz has examined task dialogues in which an expert helps an apprentice to
assemble a mechanical air compressor. She finds it convenient to represent the
focus of conversation as a set of overlapping focus spaces, where each focus
space is a collection of objects. One focus space is active and the others are
open. When a focus space is no longer needed, it is closed. One of Grosz’s
assumptions is that goals and subgoals are definable and recognizable in a task
dialogue system with the consequence that in any conversation there is an open
focus space hierarchy with the active focus space at the bottom of the hierarchy.

Sidner has approached the problem of focusing from a different perspective
by analyzing monologues. For Sidner, focus is kept track of through a dis-
course focus, actor focus, potential discourse foci, potential actor foci,
discourse focus stack, and actor focus stack. Sidner’s work, which came
after Grosz’s, is very commendable for the algorithms she presents, although
most of these are fairly sketchy.

In our approach, we will treat the focus of conversation as a collection of
nonpronominal N-nodes. Among the N-nodes that we would ordinairly expect
to always be in focus are the I and you of a conversation. To get a handle on
the focused N-nodes, we dominate them by an S-node just as if they all had
occurred in one simplex. So, for example, if I0 and you0 are the nonpronominal
N-nodes currently in focus, then the current focus representation is given by a
structure like Figure 13.1.

S

I0 you0

Figure 13.1. Typical Focus Representation

When it comes time to analyze a sentence, the current focus representation is
attached to the C-S-N parse tree of the sentence via a C-node which dominates
them both. This makes the focused N-nodes available to the N-nodes of the
C-S-N parse tree for chaining.

As an example, suppose I0 and you0 are in focus and the current input

sentence is (13.2) from Grinder [8].

119

(13.2) It was difficult to sketch myself.

S

It was difficult S

for ϕ to sketch myself

The C-S-N parse tree of (13.2) will have a form like that indicated below in
Figure 13.3.

S

S

ϕ myself

Figure 13.3. C-S-N Parse Tree of (13.2)

As the parse tree now stands in Figure 2, myself may chain to ϕ, but ϕ does
not have an N-node to chain to. Thus, there are no legitimate interpretations
without focusing. With focusing, the Parser attaches the current focus repre-
sentation containing I0 and you0 to the C-S-N parse tree by a C-node obtaining
the new C-S-N parse tree shown in Figure 13.4.

C

S S

I0 you0 S

ϕ myself

Figure 13.4. C-S-N Parse Tree with Focusing

Now, myself can chain from ϕ and ϕ can chain from I0 giving us a legitimate
interpretation of the C-S-N tree.

This kind of strategy explains a number of other examples from Grinder.
Grinder lists (13.5a)-(13.11a) as grammatical.

(13.5a) It was difficult for me to sketch myself.

120

(13.6a) It was difficult for you to sketch yourself.

(13.7a) It was difficult for him to sketch himself.

(13.8a) It was difficult for her to sketch herself.

(13.9a) It was difficult for us to sketch ourselves.

(13.10a) It was difficult for you to sketch yourselves.

(13.11a) It was difficult for them to sketch themselves.

After Equi-NP Deletion, Grinder lists only (13.5b), (13.6b), (13.9b), and
(13.10b) as grammatical.

(13.5b) It was difficult to sketch myself.

(13.6b) It was difficult to sketch yourself.

(13.7b) *It was difficult to sketch himself.

(13.8b) *It was difficult to sketch herself.

(13.9b) It was difficult to sketch ourselves.

(13.10b) It was difficult to sketch yourselves.

(13.11b) *It was difficult to sketch themselves.

The probable reason this comes about is that we are used to thinking of I,
you singular, us, and you plural as always being in focus, while referents for he,
she, and they are ordinairly not in focus. Needless to say, if referents for he,
she, or they are in focus, the situation changes completely. This is shown by
(13.12)-(13.14).

(13.12a) Nurse Bob Breezy gave up drawing.

(13.12b) [Bob] It was difficult to sketch himself.

(13.13a) Astronaut Linda Smith gave up drawing.

(13.13b) [Linda] It was difficult to sketch herself.

(13.14a) The bank embezzlers gave up drawing.

(13.14b) [the bank embezzlers] It was difficult to sketch themselves.

To indicate that various N-nodes are in focus, we bracket them at the be-
ginning of a sentence. Thus (13.15)-(13.17) are not interpretable while (13.18)-
(13.20) are.

(13.15) *It was difficult to sketch himself.

(13.16) *It was difficult to sketch herself.

(13.17) *It was difficult to sketch themselves.

(13.18) [Bob] It was difficult to sketch himself.

(13.19) [Linda] It was difficult to sketch herself.

(13.20) [the bank embezzlers] It was difficult to sketch themselves.

The following examples involve resolution through focusing.

121

(13.21) It was difficult to sketch myself.

Features
PNF FPF SPF TPF PLF GNF ANF RPF GEN

I0 + + - - - ? + - -
you0 + - + - ? ? + - -

ϕ + ? ? ? ? ? ? - -
myself + + - - - ? + + -

chaining
init_table

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa

init_table: exiting
chaining_n(myself)

refl_chaining(myself)
simplex_pred(myself)
simplex_pred: ϕ
chaining_n_to_n(myself, ϕ)

sc(myself, ϕ) = True
agr(myself, ϕ) = True
rnr(myself, ϕ) = True
chaining_e_to_n(myselfa, ϕ)

agr(myselfa, ϕ) = True
new_chain(myselfa, ϕ)

new_chain: create ϕb
new_chain: create ϕbˆmyselfa

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa

ϕbˆmyselfa

122

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
simplex_pred(ϕ)
simplex_pred:

refl_chaining: exiting
chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, myself)

sc(ϕ, myself) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, you0)

sc(ϕ, you0) = True
agr(ϕ, you0) = True
rnr(ϕ, you0) = True
chaining_e_to_n(ϕa, you0)

agr(ϕa, you0) = True
new_chain(ϕa, you0)

new_chain: create you0b
new_chain: create you0bˆϕa

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa

you0bˆϕa ϕbˆmyselfa

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, you0)

agr(ϕb, you0) = False
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, I0)

sc(ϕ, I0) = True
agr(ϕ, I0) = True
rnr(ϕ, I0) = True
chaining_e_to_n(ϕa, I0)

agr(ϕa, I0) = True
new_chain(ϕa, I0)

new_chain: create I0b
new_chain: create I0bˆϕa

123

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa
I0bˆϕa you0bˆϕa ϕbˆmyselfa

new_chain: exiting
chaining_e_to_n: exiting
chaining_e_to_n(ϕb, I0)

agr(ϕb, I0) = True
new_chain(ϕb, I0)

new_chain: create I0c
new_chain: create I0cˆϕb

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa
I0bˆϕa you0bˆϕa ϕbˆmyselfa
I0cˆϕb

124

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(you0)

non_refl_chaining(you0)
chaining_n_to_n(you0, myself)

sc(you0, myself) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, ϕ)

sc(you0, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, I0)

sc(you0, I0) = True
agr(you0, I0) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(I0)

non_refl_chaining(I0)
chaining_n_to_n(I0, myself)

sc(I0, myself) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, ϕ)

sc(I0, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, you0)

sc(I0, you0) = False
chaining_n_to_n: exiting

non_refl_chaining: exiting
chaining_n: exiting

chaining: exiting

Chaining
I0 you0 ϕ myself
I0a you0a ϕa myselfa
I0bˆϕa you0bˆϕa ϕbˆmyselfa
I0cˆϕb

Interpretations
I0cˆϕbˆmyselfa

125

(13.22) [toy] Give me that!

Features
PNF FPF SPF TPF PLF GNF ANF RPF GEN

I0 + + - - - ? + - -
you0 + - + - ? ? + - -
toy - - - + - ? ? - -

ϕ + ? ? ? ? ? ? - -
me + + - - - ? + - -

that + - - + - ? ? - -

chaining
init_table

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata

init_table: exiting
chaining_n(that)

non_refl_chaining(that)
chaining_n_to_n(that, me)

sc(that, me) = True
agr(that, me) = False

chaining_n_to_n: exiting
chaining_n_to_n(that, ϕ)

sc(that, ϕ) = True
agr(that, ϕ) = True
rnr(that, ϕ) = False

chaining_n_to_n: exiting
chaining_n_to_n(that, toy)

sc(that, toy) = True
agr(that, toy) = True
rnr(that, toy) = True
chaining_e_to_n(thata, toy)

agr(thata, toy) = True
new_chain(thata, toy)

new_chain: create toyb
new_chain: create toybˆthata

126

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata

toybˆthata

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(that, you0)

sc(that, you0) = True
agr(that, you0) = False

chaining_n_to_n: exiting
chaining_n_to_n(that, I0)

sc(that, I0) = True
agr(that, I0) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(me)

non_refl_chaining(me)
chaining_n_to_n(me, that)

sc(me, that) = False
chaining_n_to_n: exiting
chaining_n_to_n(me, ϕ)

sc(me, ϕ) = True
agr(me, ϕ) = True
rnr(me, ϕ) = False

chaining_n_to_n: exiting
chaining_n_to_n(me, toy)

sc(me, toy) = True
agr(me, toy) = False

chaining_n_to_n: exiting
chaining_n_to_n(me, you0)

sc(me, you0) = True
agr(me, you0) = False

chaining_n_to_n: exiting
chaining_n_to_n(me, I0)

sc(me, I0) = True
agr(me, I0) = True
rnr(me, I0) = True
chaining_e_to_n(mea, I0)

agr(mea, I0) = True
new_chain(mea, I0)

new_chain: create I0b
new_chain: create I0bˆmea

127

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata
I0bˆmea toybˆthata

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(ϕ)

non_refl_chaining(ϕ)
chaining_n_to_n(ϕ, that)

sc(ϕ, that) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, me)

sc(ϕ, me) = False
chaining_n_to_n: exiting
chaining_n_to_n(ϕ, toy)

sc(ϕ, toy) = True
agr(ϕ, toy) = True
rnr(ϕ, toy) = True
chaining_e_to_n(ϕa, toy)

agr(ϕa, toy) = True
new_chain(ϕa, toy)

new_chain: create toyc
new_chain: create toycˆϕa

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata
I0bˆmea toybˆthata

toycˆϕa

128

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, you0)

sc(ϕ, you0) = True
agr(ϕ, you0) = True
rnr(ϕ, you0) = True
chaining_e_to_n(ϕa, you0)

agr(ϕa, you0) = True
new_chain(ϕa, you0)

new_chain: create you0b
new_chain: create you0bˆϕa

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata
I0bˆmea you0bˆϕa toybˆthata

toycˆϕa

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
chaining_n_to_n(ϕ, I0)

sc(ϕ, I0) = True
agr(ϕ, I0) = True
rnr(ϕ, I0) = True
chaining_e_to_n(ϕa, I0)

agr(ϕa, I0) = True
new_chain(ϕa, I0)

new_chain: create I0c
new_chain: create I0cˆϕa

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata
I0bˆmea you0bˆϕa toybˆthata
I0cˆϕa toycˆϕa

129

new_chain: exiting
chaining_e_to_n: exiting

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(you0)

non_refl_chaining(you0)
chaining_n_to_n(you0, that)

sc(you0, that) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, me)

sc(you0, me) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, ϕ)

sc(you0, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, toy)

sc(you0, toy) = False
chaining_n_to_n: exiting
chaining_n_to_n(you0, I0)

sc(you0, I0) = True
agr(you0, I0) = False

chaining_n_to_n: exiting
non_refl_chaining: exiting

chaining_n: exiting
chaining_n(I0)

non_refl_chaining(I0)
chaining_n_to_n(I0, that)

sc(I0, that) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, me)

sc(I0, me) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, ϕ)

sc(I0, ϕ) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, toy)

sc(I0, toy) = False
chaining_n_to_n: exiting
chaining_n_to_n(I0, you0)

sc(I0, you0) = False
chaining_n_to_n: exiting

non_refl_chaining: exiting
chaining_n: exiting

chaining: exiting

130

Chaining
I0 you0 toy ϕ me that
I0a you0a toya ϕa mea thata
I0bˆmea you0bˆϕa toybˆthata
I0cˆϕa toycˆϕa

Interpretations
you0bˆϕa toybˆthata

I0bˆmea you0bˆϕa toybˆthata
I0cˆϕa toybˆthata

131

References

[1] David Bloom and David G. Hayes. “Designation in English”. In: Anaphora
in Discourse. Ed. by John Hinds. Edmonton, Alberta, Canada: Linguistic
Research, Inc., 1978.

[2] Leonard Bloomfield. Language. New York: Holt, Rinehart and Winston,
Inc., 1933.

[3] Joan Bresnan. “A Note on the Notion ’Identity of Sense Anaphora’”. In:
Linguistic Inquiry 2.4 (1971), pp. 589–596.

[4] Shuji Chiba. “A Note on Equi-NP Deletion”. In: Linguistic Inquiry 2.4
(1971), pp. 539–540.

[5] Noam Chomsky. Syntactic Structures. The Hague, The Netherlands: Mou-
ton & Co., Publishers, 1957.

[6] Gareth Evans. “Pronouns, Quantifiers, and Relative Clauses (I)”. In:
Canadian Journal of Philosophy 7.3 (1977), pp. 467–536.

[7] Gilles Fauconnier. “Do Quantifiers Branch?” In: Linguistic Inquiry 6.4
(1975), pp. 555–567.

[8] John Grinder. “Chains of Coreference”. In: Linguistic Inquiry 2.2 (1971),
pp. 183–202.

[9] Alexander Grosu. “On the Nonunitary Nature of the Coordinate Structure
Constraint”. In: Linguistic Inquiry 4.1 (1973), pp. 88–92.

[10] Barbara J. Grosz. The Representation and Use of Focus in Dialogue Un-
derstanding. Technical Note 151. Menlo Park, California: Stanford Re-
search Institute, 1977.

[11] Jorge Hankamer and Ivan Sag. “Deep and Surface Anaphora”. In: Lin-
guistic Inquiry 7.3 (1976), pp. 391–426.

[12] Charles F. Hockett. A Course in Modern Linguistics. New York: The
Macmillan Company, 1958.

[13] Rodney Huddleston. “A Survey of the Crossing-Coreference Controversy”.
In: Papers in Linguistics 11.3-4 (1978), pp. 295–319.

[14] Ray S. Jackendoff. “Any Vs. Every”. In: Linguistic Inquiry 3.1 (1972),
pp. 119–120.

[15] Ray S. Jackendoff. Semantic Interpretation in Generative Grammar. Cam-
bridge, Massachusetts: MIT Press, 1972.

[16] Susumu Kuno. “Lexical and Contextual Meaning”. In: Linguistic Inquiry
5.3 (1974), pp. 469–477.

[17] Susumu Kuno. “Pronominalization, Reflexivization, and Direct
Discourse”. In: Linguistic Inquiry 3.2 (1972), pp. 161–195.

[18] George Lakoff and John R. Ross. “A Note on Anaphoric Islands and
Causatives”. In: Linguistic Inquiry 3.1 (1972), pp. 121–125.

132

[19] Ronald W. Langacker. “On Pronominalization and the Chain of Com-
mand”. In: Modern Studies in English. Ed. by David A. Reible and San-
ford A. Schane. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1969.

[20] D. Terence Langendoen. Essentials of English Grammar. New York: Holt,
Rinehart and Winston, Inc., 1970.

[21] Robert B. Lees. The Grammar of English Nominalizations. The Hague,
The Netherlands: Mouton & Co. Publishers, 1963.

[22] Robert B. Lees and Edward S. Klima. “Rules for English Pronominaliza-
tion”. In: Language 39.1 (1963), pp. 17–28.

[23] Paul M. Postal. “On Coreferential Complement Subject Deletion”. In:
Linguistic Inquiry 1.4 (1970), pp. 439–500.

[24] Paul M. Postal. “On So-Called ‘Pronouns’ in English”. In: The 19th Mono-
graph on Language and Linguistics. Ed. by F. Dinneen. Washington, D.C.:
Georgetown University Press, 1966.

[25] Randolph Quirk and Sidney Greenbaum. A Concise Grammar of Con-
temporary English. New York: Harcourt Brace Jovanovich, Inc., 1973.

[26] Kelly Roach. Kelly Roach’s Caltech M.S. Thesis. url: https://www.
planetquantum.com/Pronouns/Index.htm.

[27] Kelly Roach. Pronouns. 1988. doi: 10.7907/mf427-dra49.

[28] Paul Roberts. Modern Grammar. New York: Harcourt, Brace & World,
Inc., 1967.

[29] John R. Ross. “On the Cyclic Nature of English Pronominalization”. In:
To Honor Roman Jakobson. Vol. III. The Hague, The Netherlands: Mou-
ton & Co., 1967.

[30] Ivan A. Sag. “The Nonunity of Anaphora”. In: Linguistic Inquiry 10.1
(1979), pp. 152–164.

[31] Mario Saltarelli. “Focus on Focus: Propositional Generative Grammar”.
In: Studies Presented to Robert B. Lees by His Students. Ed. by Jerrold M.
Sadock and Anthony L. Vanek. Edmonton, Alberta, Canada: Linguistic
Research, Inc., 1970.

[32] Candace L. Sidner. Towards a Computational Theory of Definite Anaphor
Comprehension in English Discourse. Technical Report 537. Cambridge,
Massachusetts: MIT Artificial Intelligence Laboratory, 1979.

[33] Carlota S. Smith. “Ambiguous Sentences with And”. In: Modern Studies
in English. Ed. by David A. Reibel and Sanford R. Schane. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1969.

[34] Douglas Smith. Frederick B. Thompson. 2014. url: https://www.
caltech.edu/about/news/frederick-b-thompson-43160.

[35] Thomas Wasow. “Anaphoric Pronouns and Bound Variables”. In: Lan-
guage 51.2 (1975), pp. 368–383.

[36] Sayo Yotsukura. The Articles in English. The Hague, The Netherlands:
Mouton & Co., Printers, 1970.

133

https://www.planetquantum.com/Pronouns/Index.htm
https://www.planetquantum.com/Pronouns/Index.htm
https://doi.org/10.7907/mf427-dra49
https://www.caltech.edu/about/news/frederick-b-thompson-43160
https://www.caltech.edu/about/news/frederick-b-thompson-43160

Index

ϕ, see notation, ϕ

Agreement, 41
anaphor

do it, 4
ellipsis, 119
extrasentential, 119
pronoun, see pronoun
sentential it, 4
so, 5

array type name, see type
name, array

C-S-N tree, 25
chain, 98
chaining

algorithm, see function,
chaining

table, 26
clause, 12

adverbial, 11
genitive, 11
infinitive, 11
relative, 11
simplex, 12
subordinate, 12
that, 11

const name
GEN, 115
ANF, 24
FPF, 24
GNF, 24
N_FEATURES, 24
PLF, 24
PNF, 24
RPF, 24
SPF, 24
TPF, 24

corefer, 99

deletion
conjunction reduction, 5
Equi-NP, 6, 7, 19
gapping, 5

Head, 6
null complement, 4
site, 7
sluicing, 5
stripping, 5
verb phrase, 5

enumeration type name, see
type name, enumeration

enumeration value
C_NODE, 24
E_NODE, 24
MINUS, 24
N_NODE, 24
PLUS, 24
QUESTION, 24
S_NODE, 24

Environment, 20
Equal Features, 42

Feature
Feature, see type name,

record, Feature
feature, 10

=, 10
̸=, 10
+, 10
-, 10
?, 10

focus, 119
actor, 119
discourse, 119
potential

actor, 119
discourse, 119

space, 119
stack

actor, 119
discourse, 119

focusing, 119
function

agr, 42
chaining, 43, 54
chaining_e_to_n, 56

134

chaining_n, 55
chaining_n_to_n, 56
command, 40
dominate, 40
eq_feat, 42
init_table, 54
new_c_node, 35
new_chain, 57
new_e_node, 36
new_n_node, 36
new_s_node, 36
non_refl_chaining, 55
precede, 40
refl_chaining, 55
rnr, 43, 115
sc, 41
separate, 41
simplex_pred, 56
view_node_str, 36

function word, 4

genitive, 8, 114
of-, 115

Global Declarations, 23
globals, see module, globals

interpretation, 98

Kay algorithm, 21

Language Driver, 20–22

module
node_proc, 35
globals, 24
parser, 37
primary_uty, 40
secondary_uty, 41
table_interp, 98
table_proc, 54

Node
Node, see type name, record,

Node
node, 25

C-node, 26
E-node, 27

N-node, 27
S-node, 27

Node Processor, 23, 35
notation

=, 7
̸=, 7
ϕ, 7
brackets, 7
questionable (?), 7
subscript, 7
ungrammatical (*), 7

noun phrase, 8
collective, 8
distributive, 8
generic, 8
nonspecific, 8
possessive, 8
quantified, 8
specific, 8

of-genitive, see genitive, of-
Operating System, 20
Output Processor, 20–22

parse tree, 10
Parser, 20–23, 37
pointer type name, see type

name, pointer
Precedes and Commands Rule, 16
Preprocessor, 20, 22
Primary Utilities, 23, 39
pronominalization, 5

ones, 5
reciprocal, 6
reflexive, 5

pronoun, 4, 9
demonstrative, 4
animate, 9
gender

female, 9
male, 9

inanimate, 9
nonreflexive, 115
ones, 10
person

first, 9

135

second, 9
third, 9

possessive
attributive, 9, 114
predicative, 10

reciprocal, 10
reflexive, 9, 115
singular, 9

Pronoun Resolution, see
Resolution

quantifier, 8, 99
bound variable, 100
range, 100
scope, 100

record field
chain_link, 24, 31
col_link, 24, 32
down_link, 24, 28
end_col_link, 24, 32
ftr, 24, 27
left_link, 24, 29
lit, 24, 27
np_link, 24, 31
number, 24, 30
pred_link, 24, 33
right_link, 24, 29
sub, 24, 27
succ_link, 24, 34
thread_link, 24, 30
up_link, 24, 28

record type name, see type
name, record

record variant
C_NODE, 24
E_NODE, 24
N_NODE, 24
S_NODE, 24

Reflexive Nonreflexive Rule, 42
New, 115

relation

commands, 13
dominates, 13
is separate from, 13
precedes, 13

Resolution, 20, 22
Resolution Driver, 22, 23

Secondary Utilities, 23, 41
Semantic Processor, 20–22
sentence, 6

ambiguous, 8
Bach Peters, 6
conjoined, 18
questionable, 7
ungrammatical, 7

simplex, see clause, simplex
substitute, 4
substitution, 4
Syntactic Conditions, 41
system

focus, 38
parse tree, 38

Table Interpreter, 23, 98
Table Processor, 23, 43, 53, 57
transformation

For-To, 11
Possessive-Ing, 11
Question, 11
WH-Fronting, 11

type name
array
Features, 24

enumeration
Feature, 24
NodeId, 24

pointer
NodePointer, 24
StringPointer, 24

record
Node, 24

136

	Preface
	Introduction
	Fundamentals
	Introduction
	Sentences
	Noun Phrases
	Pronouns
	Features
	Parse Trees
	Clauses
	Precedes and Commands

	Resolution Module
	Introduction
	Environment
	Structure inside the Resolution Module

	Global Declarations
	Nodes
	C-S-N Trees
	Chaining Tables
	C-Nodes
	S-Nodes
	N-Nodes
	E-Nodes
	lit Field
	sub Field
	ftr Field
	up_link Field
	down_link Field
	left_link Field
	right_link Field
	thread_link Field
	number Field
	np_link Field
	chain_link Field
	col_link Field
	end_col_link Field
	pred_link Field
	succ_link Field

	Node Processor
	Function view_node_str

	Parser
	Primary Utilities
	Secondary Utilities
	Syntactic Conditions
	Agreement
	Equal Features
	Reflexive Nonreflexive Rule

	Table Processor I
	Table Processor II
	Table Processor III
	Table Interpreter
	Genitives
	Focusing
	References
	Index

